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ABSTRACT
Identifying the composition of avian diets is a critical step in characterizing the roles of birds within ecosystems. However, 
because birds are a diverse taxonomic group with equally diverse dietary habits, gaining an accurate and thorough 
understanding of avian diet can be difficult. In addition to overcoming the inherent difficulties of studying birds, the 
field is advancing rapidly, and researchers are challenged with a myriad of methods to study avian diet, a task that has 
only become more difficult with the introduction of laboratory techniques to dietary studies. Because methodology 
drives inference, it is important that researchers are aware of the capabilities and limitations of each method to ensure 
the results of their study are interpreted correctly. However, few reviews exist which detail each of the traditional and 
laboratory techniques used in dietary studies, with even fewer framing these methods through a bird-specific lens. Here, 
we discuss the strengths and limitations of morphological prey identification, DNA-based techniques, stable isotope 
analysis, and the tracing of dietary biomolecules throughout food webs. We identify areas of improvement for each 
method, provide instances in which the combination of techniques can yield the most comprehensive findings, introduce 
potential avenues for combining results from each technique within a unified framework, and present recommendations 
for the future focus of avian dietary research.

Keywords: avian diet, dietary biomolecules, DNA metabarcoding, feeding ecology, prey identification, stable 
isotope analysis
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LAY SUMMARY

• Providing accurate assessments of diet composition is an essential step in understanding the life history of birds as 
well as their roles within ecosystems.

• A wide array of techniques exists to study the prey composition of birds, including recently developed laboratory-
based methods, but each of these methods comes with their own strengths and weaknesses.

• This review details the benefits and drawbacks of each technique, suggests pathways to overcoming methodological 
limitations, and demonstrates how these techniques can be leveraged to answer cutting-edge questions in avian 
dietary studies.

• Finally, we discuss how the use of multiple techniques within a single study can yield a more comprehensive under-
standing of avian diet, present novel ways to combine data from each technique within a unified framework, and sug-
gest areas of research to advance the field of avian dietary ecology.
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Métodos actuales y direcciones futuras en el análisis de la dieta aviar

RESUMEN
Identificar la composición de las dietas aviares es un paso fundamental para caracterizar los roles de las aves dentro de 
los ecosistemas. Sin embargo, debido a que las aves son un grupo taxonómico diverso con hábitos de dieta igualmente 
diversos, puede resultar difícil obtener una comprensión precisa y completa de la dieta de las aves. Además de superar 
las dificultades inherentes del estudio de las aves, el tema avanza rápidamente y los investigadores se enfrentan al 
desafío de una miríada de métodos para estudiar la dieta aviar, una tarea que se ha vuelto incluso más difícil con la 
introducción de técnicas de laboratorio a los estudios de la dieta. Debido a que la metodología condiciona la inferencia, 
es importante que los investigadores sean conscientes de las capacidades y limitaciones de cada método para garantizar 
que los resultados de su estudio se interpreten correctamente. Sin embargo, existen pocas revisiones que detallen 
cada una de las técnicas tradicionales y de laboratorio utilizadas en los estudios de dieta, y aún menos enmarcan estos 
métodos de modo específico para las aves. Aquí, discutimos las fortalezas y limitaciones de la identificación morfológica 
de presas, de las técnicas basadas en ADN, del análisis de isótopos estables y del rastreo de biomoléculas de la dieta a 
lo largo de las redes tróficas. Identificamos áreas de mejora para cada método, proporcionamos instancias en las que 
la combinación de técnicas puede producir los hallazgos más completos, presentamos posibles vías para combinar los 
resultados de cada técnica dentro de un marco unificado y brindamos recomendaciones para el futuro enfoque de la 
investigación de la dieta de las aves.

Palabras clave: análisis de isótopos estables, biomoléculas de la dieta, dieta aviar, ecología de la alimentación, 
identificación de presas, meta codificación de barras de ADN

INTRODUCTION

Evaluating the composition of avian diets has been a focus 
of ornithological inquiry for over a century (Slater 1892). 
Dietary studies have helped to characterize ecological 
interactions of birds (Burin et al. 2016) and identify prey 
preference as a driving force behind the evolution of the im-
mense biodiversity across the Class Aves (Kissling et al. 2012, 
Barnagaud et al. 2014). Diet has long been recognized as a 
defining life-history trait (Eaton 1958), and characterizing 
the dietary niche is an important step in identifying the 
roles of species within ecosystems (Elton 1927). A base-
line understanding of avian prey preferences has helped 
researchers to better identify dietary shifts caused by nat-
ural (Jaksic 2004) and anthropogenic disturbances (Murray 
et al. 2018, Trevelline et al. 2018a) as well as the popula-
tion- (English et  al. 2018) and community-wide (Spiller 
and Dettmers 2019) consequences of these disturbances. 
Studies of dietary composition also inform our under-
standing of biotic interactions, such as those stemming 
from intraspecific competition (McMahon and Marples 
2017), interspecific competition (Trevelline et al. 2018b), 
and trophic cascade events (Mäntylä et al. 2011). Finally, 
studies of bird diets have been used to highlight the eco-
logical services that birds provide (Whelan et al. 2008). In 
short, understanding the dietary niche of a species allows 
researchers to quickly describe important life-history 
traits (Abrahamczyk and Kessler 2015) as well as the com-
plex interactions that birds have with their environments 
(O’Donnell et al. 2012) and, in turn, provides essential in-
formation for the management and conservation of avian 
species and their habitats (Ontiveros et al. 2005).

Early investigation of avian diet relied upon direct 
methods such as the observation of foraging (Croxall 1976) 

and provisioning events (Snyder and Wiley 1976) or mor-
phological identification of prey retrieved from gastric la-
vage (Moody 1970), feces (Tucker and Powell 1999), and 
stomach samples from sacrificed birds (Beal 1915). While 
these methods provide a strong foundation, they are labo-
rious, seldom provide taxonomically-precise prey identifi-
cation (Symondson 2002), and often fail to detect relatively 
small prey (Culicidae; Guinan et  al. 2020, Jedlicka et  al. 
2017), rapidly digested prey (Lepidoptera; Eaton 1958, 
Trevelline et al. 2016), or highly fragmented prey remains 
(Galimberti et al. 2016). The advent of several laboratory-
based methods now allows for indirect estimation of 
prey composition, thus permitting increased precision in 
prey detection and taxonomic assignment (Taberlet et al. 
2012), while adding information on nutrient assimilation 
(Hobson and Clark 1992a) across time scales ranging from 
hours to years depending on the tissue sampled (Podlesak 
et  al. 2005). However, while these laboratory-intensive 
techniques have revitalized studies of avian diets and 
trophic dynamics, they have their own drawbacks, such 
as an inability to accurately quantify prey counts or bio-
mass with DNA-based methods (Piñol et al. 2015), and the 
variable nature of biomolecule assimilation (Galloway and 
Budge 2020) potentially impacting results stemming from 
isotopic and lipid-based methods. Because the findings 
of dietary studies are methodologically sensitive (Marti 
1987), it is important to understand the benefits and limi-
tations of each technique before use.

While valuable reviews detail the most commonly used 
methodologies in dietary reconstruction (Schoeninger 
2010, Traugott et al. 2013, Nielsen et al. 2017, Alberdi et al. 
2019), few pertain specifically to birds (Rosenberg and 
Cooper 1990, Barrett et al. 2007), and none discuss how 
these methods are currently used in avian diet research 
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or how they can be leveraged to build on the wealth of 
prior research in birds, one of the best-studied taxonomic 
groups. Here, we review the current methods in avian die-
tary studies detailing the applications, limitations, and 
future directions of each technique. In particular, we high-
light areas where additional methodological refinement 
is needed, the future directions for avian dietary studies, 
and how data from morphological, molecular, and isotopic 
studies can be integrated to provide a more comprehensive 
understanding of avian diet.

MORPHOLOGICAL IDENTIFICATION

History and Focus
Traditional methods have informed much of our un-
derstanding of avian dietary ecology (Hyslop 1980, 
Rosenberg and Cooper 1990, Bent 1925), and serve as 
the basis for comparison with more recently developed 
laboratory techniques. Morphological prey identifica-
tion has aided in dietary descriptions of near-threatened 
warblers (Deloria-Sheffield et al. 2001), helped to explain 
how habitat structure and search tactics are related to 
forest bird prey choice (Robinson and Holmes 1982), and 
revealed how aerial insectivores recognize differences in 
the quality of prey provisioned to offspring (Quinney and 
Ankney 1985). As these methodologies have been used for 
well over a century (McAtee 1912), a wealth of literature 
already exists that describes different approaches to the 
collection and identification of prey from morphological 
samples (Duffy and Jackson 1986, Rosenberg and Cooper 
1990). Here, we briefly introduce methods for morpho-
logical prey identification to understand prey composi-
tion (vs. behavioral ecology, e.g., Remsen and Robinson 
1990, Ydenberg 1994).

Methodological Considerations
Sample collection, storage, and processing. 

Morphological prey identification techniques are di-
verse, and include manual identification of prey during 
observations of foraging (Collis et  al. 2002), feeding 
(Fleischer et  al. 2003) or provisioning events (Margalida 
et  al. 2005) as well as monitoring nestling-provisioning 
attempts with nest-box cameras (Currie et  al. 1996) and 
digital photography (Gaglio et al. 2017). Researchers have 
also identified prey retrieved from regurgitates collected 
via emetics (Prŷs-Jones et al. 1974), neck ligatures (Owen 
1956), or lavage (Brensing 1977); feces collected while 
handling birds (Ralph et  al. 1985) or from past deposits 
(Waugh and Hails 1983); and samples collected directly 
from gizzards (McAtee 1918) or stomachs (Sherry 1984, 
Chapman and Rosenberg 1991). Some types of direct prey 
collection can cause undue stress (Duffy and Jackson 1986), 
induce behavioral changes (Little et al. 2009), or have lethal 
outcomes (Zach and Falls 1976, Poulin et al. 1994, Carlisle 

and Holberton 2006), suggesting that some direct collec-
tion techniques are undesirable, particularly with at-risk 
species (Ralph et al. 1985).

When samples must be collected, diet items should be 
analyzed and classified soon after collection to avoid issues 
caused by tissue degradation. However, if samples cannot 
be processed immediately, preservation via freezing or 
storage in high concentration ethanol or formalin enables 
long-term storage with minimal loss of morphological in-
tegrity (Duffy and Jackson 1986). For studies using both 
observational and laboratory-based techniques, storage 
methods must be compatible as they may influence the 
chemical make-up of prey tissue (Sarakinos et al. 2002) or 
the ability to retrieve high-quality DNA (Williams et  al. 
1999) (Figure 1).

Prey classification. Expertise in prey system-
atics or the aid of detailed taxonomic keys (Merritt 
and Cummins 1996, Williams and McEldowney 1990) 
increases prey classification accuracy (Ralph et al. 1985, 
Sullins et  al. 2018). However, even expert taxonomists 
are challenged to provide complete and detailed taxo-
nomic classifications (Ralph et  al. 1985, Parrish 1997), 
especially if prey remains are difficult to detect in feces 
or stomach contents (Deagle et al. 2007, Thalinger et al. 
2017). Fortunately, characteristic hard parts of prey, such 
as sclerotized arthropod mandibles or wing fragments 
(Sherry et  al. 2016), chitinous beaks of cephalopods 
(Xavier et  al. 2011), bones of vertebrate prey (Dirksen 
et al. 1995), and seeds from fruits (Gorchov et al. 1995) 
and grains (Desmond et al. 2008) often persist in both 
regurgitant and fecal samples.

Visual identification methods are frequently criticized 
for their inability to classify prey items to fine taxonomic 
levels (Symondson 2002, Pompanon et al. 2012). However, 
using vouchered reference collections of locally available 
prey can help to alleviate these problems and can quantify 
prey availability in the process (Sherry et al. 2016, Kent and 
Sherry 2020). Additionally, species-level prey identifica-
tion is not always necessary (Sherry et al. 2020), suggesting 
that studies will not always benefit from increased taxo-
nomic resolution.

Future Potential
In certain cases, morphological prey identification provides 
greater insights than molecular or isotopic methods. For 
instance, the ability to distinguish caterpillars from adult 
moths (Barbaro and Battisti 2011) and winged from worker 
ants (Herrera 1983) may be important for understanding 
how prey is captured and for estimating the nutrient con-
tent of prey items. DNA-based methods cannot distinguish 
between developmental stages of prey items (Trevelline 
et al. 2016) while isotopic methods can only be used to do 
so if life stages differ in their isotopic composition (Mihuc 
and Toetz 1994).
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Morphological techniques also provide quantitative in-
formation about prey, such as the number of distinctive 
prey parts and thus the number of prey individuals per 
sample (Sherry et al. 2016), the size of prey items (Calver 
and Wooller 1982), and even the estimated size of par-
tially digested prey (Hódar 1997, Rosamond et al. 2020). 
Furthermore, morphological techniques are unique in 
that they can be used to estimate prey biomass (Lalas 

and McConnell 2012, Ormerod and Tyler 1991), which 
provides critical information on energetic fluxes through 
food webs and can be used in conjunction with frequency 
of occurrence and total count to determine the relative or 
absolute importance of individual prey taxa (reviewed in 
Duffy and Jackson 1986). Finally, as morphological iden-
tification of prey is minimally destructive, researchers can 
glean nutritional information on prey (Grémillet et  al. 

FIGURE 1.  An outline of the general workflow from sample collection through data analysis for the most common methods used in 
avian diet studies.
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2004) as well as digestion-related information (Barton 
and Houston 1993) from bolus (Boyle et al. 2014), pellet 
(Wallick and Barrett 1976), lavage (Cherel and Ridoux 
1992), or fecal samples (Varennes et  al. 2015), to assess 
gross energy content (Karasov 1990), the caloric value of 
different prey sizes (Stephens and Barnard 1981) or species 
(Guillemette et al. 1992), as well as concentrations of prey-
derived macronutrients (Albano et al. 2011).

Although researchers may turn to DNA-based methods 
for rapid, thorough, and precise identification of diet items 
or isotopic methods for information on nutrient assimila-
tion at greater time scales, morphological prey identifica-
tion will remain relevant. In addition to a list of potential 
prey taxa, morphological techniques can also provide the 
reference tissue required for laboratory-based techniques 
(i.e. prey DNA sequences and isotopic or lipid composi-
tion), as well as data on prey consumption, which can be 
used as informative priors in Bayesian stable isotope mixing 
models (Franco-Trecu et al. 2013). Furthermore, advances 
in deep learning and image processing may soon allow for 
computational classification and quantification of prey 
taxa, thus reducing the drawbacks associated with mor-
phological identification (Høye et al. 2021) and ushering 
in the development of an online database of “prey part” 
images, akin to the DNA barcodes found in the Barcode 
of Life Database (BOLD; Ratnasingham and Hebert 2007).

DNABASED METHODS

History and Focus
DNA-based methods have been used to study the feeding 
habits of birds for over 20 years (Sutherland 2000, Casement 
2001) with sequence-based identification, or DNA 
barcoding, evolving and improving dramatically in the last 
decade. The development of high-throughput sequencing 
used in combination with DNA barcoding across multiple 
taxa within a mixed sample (i.e. DNA metabarcoding), now 
allows for hundreds of complex samples to be processed 
in parallel (Pompanon et  al. 2012). Although powerful, 
the greatest drawbacks associated with high-throughput 
techniques lie in the up-front costs and the computational 
complexity of analysis (Jo et al. 2016). However, the cost 
of sequencing continues to decrease—particularly the per-
sample costs when highly multiplexed—and open-source 
software is available for the analysis of many prey types 
(Bolyen et al. 2019, Palmer et al. 2018).

Methodological Considerations
Sample collection, storage, and processing. Most 

DNA-based avian dietary analyses are performed on fecal 
samples (Ando et al. 2020), which can be collected directly 
from birds (Trevelline et al. 2018b, Jarrett et al. 2020), from 
holding bags (paper: Trevelline et al. 2016, Southwell 2018; 
or cloth: Karp et al. 2013), or even from the environment, 

although the risk of sample contamination is greater 
(Oehm et al. 2011, Gerwing et al. 2016, McClenaghan et al. 
2019). Similar to fecal samples, boluses are a minimally 
invasive source of dietary DNA. Other sample types have 
been used for genomic diet analyses, but these techniques 
are more invasive (i.e. lavage, induced regurgitation) or 
otherwise hold no obvious advantage over fecal samples 
(cloacal or mouth swabs, Vo and Jedlicka 2014; stomach 
samples, Snider et al. 2021). Though not frequently used, 
stomach samples in natural history collections hold great 
potential for molecular diet analyses (Remsen et al. 1993). 
However, this approach may not always be suitable because 
many historic samples are stored in formalin, a chemical 
that crosslinks DNA and complicates downstream amplifi-
cation and sequencing techniques. Freezing samples upon 
collection is ideal for most analyses (Crisol-Martínez et al. 
2016, Gerwing et al. 2016, Jarrett et al. 2020), and while 
additional preservation media are not necessary, samples 
can also be placed in stabilizing buffer, silica, or ethanol be-
fore freezing for long-term storage (Figure 1). If immediate 
freezing is not possible, samples stored at room tempera-
ture in ethanol are useful for extended periods (Trevelline 
et  al. 2016), although samples can degrade if ethanol 
concentrations fall below 70% (S. Sonsthagen, USGS, per-
sonal communication).

Studies have tested the efficacy of different DNA extrac-
tion techniques (Oehm et  al. 2011, Jedlicka et  al. 2013), 
though most DNA-based studies use commercially avail-
able kits (e.g., Qiagen or Zymo) with protocol modifications 
to optimize DNA yield and quality (Trevelline et al. 2016). 
Phenol/chloroform extractions tend to produce infe-
rior results at the polymerase chain reaction (PCR) stage 
(Lee et  al. 2010), likely due to inhibitors found in fecal 
samples (Al-Soud and Rådström 2000). Because commer-
cial kits cannot always accommodate an entire sample, 
sub-sampling is common, but samples should be thor-
oughly homogenized before sub-sampling (e.g., Forsman 
et al. 2021) to minimize biases in prey detection (Figure 
2). Increasing the number of extraction replicates (Lanzén 
et  al. 2017, Mata et  al. 2019), as opposed to increased 
sample input amount, has been shown to be more effective 
for capturing alpha-diversity within a sample (Brannock 
and Halanych 2015), while chemical lysis, physical disrup-
tion (e.g., bead-beating) and homogenization may mini-
mize prey-specific DNA recovery bias.

DNA barcode markers. Identifying a suitable portion of 
the genome as the taxonomic barcode is critical. This region 
must be sufficiently conserved across putative diet taxa to de-
velop generalized PCR primers, but also variable enough to 
distinguish prey taxa. An effective barcode is one for which 
the divergence of species within a genus will be lower than 
that of genera within a family, and so on (Hajibabaei et al. 
2006, Clare et al. 2007). Thus, only a few suitable markers, 
such as the frequently used mitochondrial cytochrome c 
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oxidase I (COI) gene, have been identified and consistently 
used in avian diet studies (Figure 2). The specific primers and 
number of DNA barcoding loci used will depend on whether 
specific prey (Karp et al. 2014) or a wide range of taxa (Jusino 

et al. 2019) are targeted. However, no single primer set can 
perfectly amplify every species, therefore using multiple 
primer sets targeting different loci is advised (Corse et  al. 
2019, da Silva et al. 2019, Forsman et al. 2021).

FIGURE 2.  A diagram of common considerations when characterizing prey with DNA-based methods, including barcoding marker 
choice and quality control. While no consensus method exists for DNA-based dietary characterizations, articles further detailing each 
step are included.
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Indexing. Before high-throughput sequencing, 
diet-derived DNA must be appended with oligonu-
cleotide adapters to allow PCR amplicons to bind to 
the sequencing flow cell. These adapters also contain 
sample-specific DNA sequences (i.e. indexes) that allow 
for the binning of reads from each sample. Adapters can 
be appended directly to barcoding primers (i.e. one-step 
preparation) or appended to DNA barcode amplicons 
during a second, low-cycle PCR (i.e. two-step prepara-
tion; Zizka et  al. 2019). One-step approaches are faster 
and reduce the costs of PCR reagents, but there is evi-
dence that PCR efficiency may be reduced compared 
to the two-step approach (Zizka et  al. 2019). The two-
step approach is often preferred because indexes can be 
attached to any amplicon, as long as they have a linker 
sequence complementary to the indexing primer. Both 
approaches retain information on the sample and primer 
set used; therefore, researchers can use the same adapters 
on all of the amplicons in a single sample even if mul-
tiple primers targeting various barcoding loci are used. 
However, if amplicon length differs greatly between the 
target loci, sequencing multiple barcoding regions on the 
same flow cell may alter the number of expected reads 
for each sample/primer combination due to the prefer-
ential binding of smaller sequences to the flow cell (S. 
Dabydeen, Illumina Inc., personal communication).

Sequence processing. Following sequencing, a number 
of processing steps are required before assessing diet com-
position (Figure 3). Reads should be trimmed and filtered 
to remove low-quality sequencing reads and artifacts. 
However, as a consensus approach has not been reached 
(see Alberdi et al. 2018, O’Rourke et al. 2020), we recom-
mend making bioinformatic pipelines open access to facil-
itate comparability of data across studies. Next, putative 
dietary taxa are delineated by clustering highly similar 
sequences (typically 97%) into operational taxonomic units 
(OTUs) and selecting a representative sequence for each 
cluster. Alternatively, algorithms can be used to correct 
sequencing errors and retain amplicon/exact sequence 
variants (ASVs or ESVs), which are, in effect, OTUs clus-
tered to 100% similarity (Figure 3). Ideally, an OTU or ASV/
ESV should represent a taxonomic unit corresponding to 
the species level (Alberdi et al. 2018).

Prey classification. Taxonomic assignment of OTUs 
is accomplished by comparing the representative prey-
derived sequences to sequences in a reference database 
such as the National Center for Biotechnology Information 
(NCBI) nucleotide database (Benson et  al. 2013) or the 
Barcode of Life Database (Ratnasingham and Hebert 2007) 
(Figure 2). Both databases tend to be biased towards areas 
where researchers are actively sampling biodiversity, thus 
representation is higher for some taxonomic groups (e.g., 
charismatic Lepidoptera) and for certain parts of the world 
(e.g., Europe, North America).

When reference libraries are incomplete, diet items may 
only be assignable to higher-level taxonomic ranks (e.g., 
Order or Family), or may be missed completely leading to 
false negative results (Virgilio et  al. 2010). Furthermore, 
distinct representative prey sequences (e.g., multiple 
ASVs) could be assigned the same taxonomic classifica-
tion, leaving open the decision whether different sequences 
assigned to the same taxonomic rank should be lumped 
or considered distinct. One approach is to aggregate diet 
items with the same taxonomic assignment (da Silva et al. 
2020), but this can be unsatisfactory if sequencing errors 
cause sequences from a particular species to be assigned 
to the genus level instead of being aggregated with other 
sequences of the same species. In this case, the prey taxon 
would be treated as a distinct, unidentified species within 
the same genus. In addition to biases stemming from in-
complete and erroneous reference databases or from PCR 
and sequencing, prey taxa may be distinguished based 
on genetic divergence rather than reproductive isolation. 
Recently diverged species may be reproductively isolated 
yet genetically similar at barcoding regions unaffected by 
the speciation event (Wiemers and Fiedler 2007), while 
hybridization and introgression can cause cytonuclear 
disequilibrium and mask distinct species when primers 
target organelle DNA (Funk and Omland 2003, Toews and 
Brelsford 2012). Conversely, prey items with large pop-
ulation sizes may contain substantial genetic diversity, 
causing their sequences to demonstrate high intraspe-
cific divergence (Funk and Omland 2003), though using a 
barcoding marker with low intraspecific variation can alle-
viate this issue.

Finally, DNA-based methods alone cannot deter-
mine how a diet-derived sequence became present in the 
sample. Probabilistic cooccurrence models (Griffith et al. 
2016) have been proposed to detect accidental consump-
tion (i.e. the consumption of prey which contains the DNA 
of other taxa through consumption/parasitism of another 
taxa), though direct observation may be necessary as 
these models cannot definitively indicate secondary con-
sumption (Tercel et  al. 2021) nor can they determine if 
an avian parasite was consumed purposefully or acciden-
tally. Detecting cannibalism also poses a unique issue as 
DNA-based classification techniques rely on conspecifics 
sharing highly similar, if not identical, barcode sequences. 
However, researchers can employ barcoding markers that 
are conserved within the predator species but exhibit high 
intraspecific variation, thus allowing for the differentiation 
of DNA sequences stemming from an individual’s diet vs. 
its own genome.

Quality control. The degree of biological and 
technical replication necessary for maximizing the 
detectability of diet-derived sequences must be balanced 
with minimizing false positives caused by contamina-
tion or sequencing errors (Taberlet et al. 2018). The use 
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of positive and negative controls during sample collec-
tion and DNA extraction, amplification, and sequencing 
processes can guide how reads are filtered during the 
sequence analysis stage (reviewed in Zinger et al. 2019) 

(Figure 2). Additionally, technical replicates, in the form 
of multiple PCR reactions for each DNA extract, can 
minimize false negatives in DNA metabarcoding data, 
especially for diet items with low detection probabilities 

FIGURE 3.  A diagram of the common considerations when characterizing prey with DNA-based methods, which includes sequencing 
read processing and data analysis. While no consensus method exists for DNA-based dietary characterizations, articles further detailing 
each step are included.
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(Ficetola et  al. 2015) or poor DNA amplification effi-
ciency (Jusino et al. 2019).

Data Analysis
Summary analyses. Once the taxonomic composition 

of the sample has been determined, data are summarized 
with a variety of analytical techniques (Figure 3) to create 
a representation of an individual’s diet. Researchers fre-
quently transform sequence data into presence-absence 
matrices because read abundance does not directly cor-
relate to the biomass or frequency of corresponding prey 
consumed. However, this method can overestimate the 
importance of food consumed in small quantities (Deagle 
et al. 2019). Assuming the use of a presence-absence ma-
trix of unique prey taxa or sequences, the next step is often 
to estimate the proportion of samples that contain a partic-
ular taxon, termed the frequency of occurrence.

Specialized analyses. More complex analyt-
ical approaches include ordination, such as principal 
components analysis (PCA; Crisol-Martínez et al. 2016) or 
non-metric multidimensional scaling (NMDS; Trevelline 
et al. 2018a) (Figure 3), which are statistical methods that 
collapse high-dimensionality data (i.e. taxonomic com-
position) into a smaller number of meaningful diet axes. 
If downstream analyses are to be implemented, such as 
deriving a measure of distance in niche space between 
two species, PCA is generally preferable to NMDS, t-SNE 
(Maaten and Hinton 2008), or UMAP (McInnes et  al. 
2018) because these methods do not preserve distances in 
multivariate space. Following data ordination, hypothesis 
testing can be implemented. For example, criteria can be 
developed to identify groups in multivariate space and test 
whether these accord with the bird species or groups in 
question (e.g., k-means clustering, Forgy 1965), they might 
derive multivariate hypervolumes (Blonder et  al. 2014), 
and implement a randomization, null-model approach, or 
describe the qualitative differences in multivariate niche 
space among species or other groups.

Future Potential
DNA-based methods are relatively new (Hebert et al. 2003) 
and are advancing rapidly to overcome current limitations. 
For instance, recent areas of research are exploring the use 
of custom positive controls, such as mock mixtures of po-
tential prey DNA, to gauge the success of the sequencing 
run and the ability of primers to detect prey taxa (O’Rourke 
et al. 2020). The inclusion of mock mixtures may become 
a standard feature of DNA metabarcoding diet studies, 
though familiarity with potential prey taxa is essential to 
develop an appropriate mock mixture. Custom reference 
libraries may be designed for particular prey taxa within 
the study area to verify the accuracy of representative prey 
barcodes; though, such an approach necessitates the collec-
tion, identification, and sequencing of all putative prey taxa.

The inability to accurately quantify the amount of each 
prey type consumed, either absolutely or relative to other 
prey taxa, is a major weakness of DNA-based methods and 
may be difficult to resolve due to the variety of factors: 
primers are inherently more efficient at amplifying some 
prey (reviewed in Nilsson et  al. 2019); tissue types and 
prey taxa may have different copy numbers of marker 
genes (Thomas et al. 2014, Prokopowich et al. 2003); and 
some prey may be more difficult to digest, like those with 
exoskeletons (Clare et al. 2014). In silico analyses (Clarke 
et al. 2014) and controlled feeding studies (Thomas et al. 
2016) have shown promise in mitigating (Piñol et al. 2019), 
or at least accounting for quantification biases inherent 
to DNA-based studies (Palmer et al. 2018). However, the 
limited experimental work done to associate the number 
of reads obtained for known amounts of specific prey taxa 
(Deagle et al. 2010) often uses an extremely limited diver-
sity of prey items (approximately 2–6 taxa), suggesting that 
direct comparisons will be ineffective for complex dietary 
mixtures. Experimental designs that consider multiple 
consumer species, and a wider, more realistic range of diet 
items are necessary before its widespread application.

A semi-quantitative understanding of diet might also 
be possible with longer sequencing reads that are vari-
able enough to detect and distinguish different individuals 
within each of the prey species present in a diet sample. 
However, most high-throughput sequencing methods are 
currently limited to short read lengths (<600 base pair 
paired-end reads) and, even if sequencing technology 
would allow for longer barcodes with sufficient sequence 
variation among conspecifics, it is possible that such long 
DNA fragments would not survive extended preserva-
tion or digestion (Symondson 2002), thus necessitating 
bioinformatic algorithms to identify unique contiguous 
prey sequences among highly similar barcode sequences. 
Finally, the use of internal standards for metabarcoding 
analyses may one day offer a method to compare absolute 
prey-derived molecule counts (Harrison et al. 2020), sim-
ilar to the use of “housekeeping” genes as internal standards 
for studying gene expression across samples with qPCR 
methodologies (reviewed in Eisenberg and Levanon 2013).

Current DNA-based approaches are also limited by 
their ability to identify specific prey traits, such as age 
or life stage, as an organism’s DNA marker remains un-
changed throughout its life. However, epigenetic molec-
ular age biomarkers (MABs; Jarman et al. 2015), such as 
mRNA expression levels, locus-specific DNA methyla-
tion, or telomere length, are likely to change throughout 
an organism’s life, thus giving researchers the opportunity 
to glean prey life history information through the devel-
opment of additional genetic tools. To date, such methods 
have not been implemented in dietary studies generally, 
let  alone in avian studies. However, the development of 
such novel applications promises to address research 
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questions fundamental to our understanding of avian 
trophic ecology.

DNA-based metabarcoding methods excel at individual 
prey detection and identification, and so are particularly 
well-suited to answer questions that require species-level 
data. However, given that dietary taxa can vary greatly in 
resource quality, an alternative approach would be to step 
away from taxonomic complexities and instead focus on 
prey characteristics (e.g., nutrient content or life history 
traits), as this would dramatically simplify both the anal-
ysis and, presumably, the number of samples required to 
reach robust conclusions. We are aware of only one avian 
metabarcoding study that directly assessed prey charac-
teristics (aquatic vs. terrestrial life stages; Trevelline et al. 
2018a), and while the absence of a comprehensive prey 
trait database currently makes such an approach chal-
lenging, we encourage future research to consider prey 
traits in their analyses to better illuminate the functional 
characteristics of avian dietary ecology.

DNA-based dietary studies have mostly focused on the 
description of prey taxa and the ecosystem services of 
avian predators (e.g., Crisol-Martinez et al. 2016); however, 
we can also leverage DNA-based methods to examine diet 
overlap of sympatric species (Trevelline et al. 2018b), and 
thus address theoretical questions related to competition 
and resource partitioning (e.g., Spence et al. 2021). There 
is also considerable scope to examine whether species 
are dietary specialists or generalists (Jesmer et al. 2020), 
and how prey selection is influenced by disturbance (e.g., 
hurricanes, fire) or time of the annual cycle when nutrient 
requirements are high (e.g., breeding, pre-migration), 
thus clarifying responses to prey availability and physio-
logical need. DNA-based methods are also well-suited for 
identifying the ecological services that birds offer, such 
as in seed dispersal (González-Varo et al. 2014) and pol-
lination (Spence et al. 2021). From a conservation stand-
point, DNA-based methods can help managers assess the 
foraging success of captive bred individuals reintroduced 
to the wild, thus lending an important perspective on the 
potential for long-term resilience (e.g., Volpe et al. 2021). 
Finally, there is considerable opportunity to examine how 
prey species communities have changed over time by 
taking core samples (i.e. guano at communal roosts) and 
extracting DNA from different layers representing different 
points in time. The ability to associate prey communities 
with climate may help to predict how climate change will 
affect prey availability for a range of birds.

STABLE ISOTOPE ANALYSIS

History and Focus
Elements may exist in forms that differ in atomic mass (i.e. 
isotopes) and are typically found overwhelmingly in one 
common form with lower abundances of rarer, usually 

heavier, forms. The relative abundance of rare to common 
isotopes can change as a result of numerous biogeochem-
ical reactions, where abundance is expressed in delta (δ) 
notation relative to international standards in parts per 
thousand (‰, per mil; Hayes 1982). In biological systems, 
stable isotopes are incorporated at the base of food webs 
through fixation of inorganic compounds by primary 
producers (Kelly 2000), and their relative abundances are 
subsequently modified as they move through the food 
web via metabolic processes. For example, birds incorpo-
rate the isotopic values of their prey into their own tissue, 
and the extent of subsequent isotopic change is generally 
dependent upon the element, dietary quality, and tissue 
type (Boecklen et al. 2011). Some elements (e.g., lead or 
strontium) with high atomic mass show little to no isotopic 
change with trophic position and, thus, make for useful 
direct tracers of basal energy pathways to consumers 
(DeNiro and Epstein 1978), while the lighter elements (e.g., 
nitrogen) show stronger isotopic changes with trophic level 
and can inform trophic position (Wassenaar 2019). Thus, 
by characterizing the stable isotope ratios of prey sources 
at the base of food webs and knowing how these ratios are 
modified between diet and consumer through isotopic dis-
crimination, it is possible to use the stable isotope ratios 
in avian tissues to infer dietary source and feeding habits.

A wealth of literature discusses the details of stable iso-
tope analyses in ecological studies (e.g., Peterson and Fry 
1987, Schmidt et al. 2007, Katzenberg 2008, Hobson 2011, 
Boecklen et al. 2011, Layman et al. 2012, Wiley et al. 2017), 
and their use in the study of bird movements (Rubenstein 
and Hobson 2004, Hobson and Wassenaar 2019). Here, 
we provide a brief overview of stable isotope analysis to 
investigate the diets of birds by detailing the relevant 
applications, considerations, and future directions of this 
technique.

Methodological Considerations
Sample collection, storage, and processing. Because 

stable isotopes are incorporated during tissue synthesis, 
any tissue that can be retrieved from a bird can be used 
for stable isotope analysis; though, selection of tissue will 
depend on the focus and timescale of the research ques-
tion (Figure 4). To assess dietary isotopic endpoints, 
researchers should be sure to analyze the tissues of the 
main dietary items that birds consume, such as fruits (Vitz 
and Rodewald 2012), prey muscle tissue (Anderson et al. 
2009), or even the entire body (Herrera et al. 2003) to en-
sure that the isotopic sources are representative of the prey 
pool contributing to the nutrition of the consumer. For 
all tissues, freezing is the preferred preservation method 
(Bond and Jones 2009) followed by air drying with a 
smokeless heat source (Bugoni et al. 2008), or storage in 
70% ethanol (Hobson et  al. 1997). Preservation media, 
such as formalin, genetic buffer solutions (Hobson et  al. 
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1997), or high percentage ethanol (Bugoni et al. 2008) can 
replace isotopes within dietary or avian tissues with their 
own, which can be particularly problematic for carbon, ni-
trogen, and hydrogen stable isotope analyses. For lipid-rich 
tissues, chemical lipid-extraction may be needed before 
analysis (Bond and Jones 2009) to facilitate accurate diet 
reconstruction (Kojadinovic et  al. 2008). Similarly, diets 
or avian tissues rich in carbonates often require acidifi-
cation before analysis to obtain the unbiased δ 13C values 
of the organic matrix (Polito et al. 2009, Mackenzie et al. 
2015). However, chemical lipid-extraction and acidifica-
tion have the potential to bias tissue δ 13C and δ 15N values 
(Jaschinski et al. 2008, Elliott and Elliott 2016). As such, 
mathematical normalization for tissue lipid and/or carbo-
nate content represents an alternative method when chem-
ical lipid-extraction or sample acidification is not feasible 
or advisable (Post et al. 2007, Jaschinski et al. 2008, Oppel 
et al. 2010).

Isotope systems. The most common elements used in 
isotopic dietary studies are those of carbon (13C/12C; δ 13C) 
and nitrogen (15N/14N; δ 15N), which typically provide infor-
mation on the source of feeding and trophic position, re-
spectively (Figure 4). Stable isotopes of hydrogen (2H/1H; 
δ 2H) and oxygen (18O/16O; δ 18O) are tightly linked to the 
hydrological cycle and ambient temperature, and have 
also been used to identify nutrient inputs from terrestrial 
and aquatic origins (Figure 4). Sulfur (34S/32S; δ 34S) isotope 
ratios have been used to identify nutrients derived from 
marine vs. terrestrial sources, proximity to coastlines, ben-
thic vs. pelagic energy pathways, and use of estuarine and 
marsh habitats (Figure 4). Analysis of “heavy” elements 
can be useful for delineating source of feeding, especially 
those of strontium (87Sr/86Sr; δ 87Sr), which are associated 
with the age of bedrock and, in North America, tend to 
vary along longitudinal gradients (Figure 4). While the in-
vestigation of a single element’s isotopic ratio within avian 
tissues can provide details about diets and foraging habitat, 
using the stable isotopic values of multiple elements within 
a single study can allow researchers to differentiate among 
prey sources using isotopic mixing models or determining 
spatial origins of diets (Bowen and West 2019).

Isotopic discrimination.  The change in stable isotope 
ratios that takes place between reactants and products or 
as a result of kinetic processes is known as isotopic frac-
tionation (Tiwari et  al. 2015). Isotopic fractionation is 
rarely measured in natural systems; instead, the isotopic 
discrimination that results from many individual fractiona-
tion events is measured (Schoeller 1999). Isotopic discrim-
ination patterns between diets and consumers in animal 
food webs involving changes in δ 15N values are particularly 
useful once established. Processes of amination and deam-
ination of proteins result in step-wise and fairly predict-
able increases in consumer tissue δ 15N values with each 
trophic transfer (Macko et al. 1986), and this has allowed 

researchers to use tissue δ 15N values to estimate consumer 
trophic position (DeNiro and Epstein 1981, Hobson and 
Welch 1992). Trophic discrimination factors (TDFs) based 
on δ 15N values, or the differences in δ 15N values between 
prey and consumer tissues, range between +2.5‰ to +5‰ 
with average values centered around +3‰ to +3.5‰ (Post 
2002). A recent meta-analysis of factors influencing TDFs 
have resulted in the development of the R-package SIDER 
as a tool to predict TDFs when TDFs from controlled 
studies are not available (Healy et  al. 2018) (Figure 5). 
However, researchers are encouraged when possible to 
conduct controlled long-term feeding trials of focal spe-
cies to establish appropriate TDFs (Martínez del Rio et al. 
2009).

For δ 13C values, it is generally assumed that TDFs are 
relatively low with average values centering around +0.4‰ 
(Post 2002). However, TDFs can vary by avian tissue 
type even when synthesized under the same diet due to 
differences in biochemical processes and macromolecule 
routing, which is especially apparent among lipid-rich and 
keratin-based tissues that may require correction factors 
before analysis (Hobson and Clark 1992b, Cherel et  al. 
2014b). Stable sulfur isotope measurements (δ 34S) appear 
to also have low TDF values (~0.0‰ to +1‰) and so can 
be more readily linked to food web source inputs (Richards 
et al. 2003, Arneson and MacAvoy 2005, Florin et al. 2011). 
Even so, δ 34S TDFs can vary due to the input of endogenous 
sulfur from the recycling of body proteins when individuals 
consume low-protein diets (Richards et al. 2003). Little is 
currently known about TDFs associated with δ 2H values 
and whether or not patterns of trophic enrichment are due 
to isotopic discrimination or ambient exchange (reviewed 
in Vander Zanden et al. 2016).

Isotopic turnover.  The residency time of elements in 
animal tissues varies approximately by the metabolic rate 
of that tissue (Figure 4). This means that metabolically 
active tissues will assimilate isotopic information on diet 
over different timescales, and thus present an opportunity 
to choose a tissue most appropriate for the dietary integra-
tion period of interest (Hobson 1993, reviewed by Thomas 
and Crowther 2015, Carter et al. 2019a). Researchers have 
performed stable isotope analysis on various avian tissues 
to understand an individual bird’s diet composition at scales 
ranging from hours (breath and plasma; Hatch et al. 2002, 
Podlesak et al. 2005, Pearson et al. 2003), days and weeks, 
(red blood cells; Podlesak et al. 2005, Hobson and Clark  
1993), to months (feathers and claws; Hedd and 
Montevecchi 2006, Bearhop et  al. 2003) or even years 
(bone collagen; Stenhouse et al. 1979, Hobson and Clark 
1992a, Hobson and Sealy 1991, Hedges et al. 2007). Indeed, 
it is possible to estimate year-round dietary patterns by 
examining multiple tissues from the same individual 
(Hobson 1993, Hobson and Bond 2012, Gòmez et  al. 
2018). For tissues that are metabolically inactive following 
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synthesis (e.g., claws, feathers) the tissue’s isotopic informa-
tion is effectively “locked in”, and represents only the time 
window over which the tissue was grown (Hobson 2005). 
For birds with predictable molt cycles or those stored in 

museum collections, this represents an opportunity to 
sample feathers to infer diet at a previous time (Blight 
et al. 2015). Additionally, claw tissue is metabolically inert 
once formed but claws grow continuously, thus allowing 

FIGURE 4.  A diagram of the common considerations when characterizing prey with isotopic methods, which includes stable 
isotope choice and tissue selection. Citations are included to provide example studies and to highlight review articles that detail each 
methodological consideration.
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researchers to make dietary inferences on a captured bird 
based on previous months (Bearhop et al. 2003).

Isotopic turnover rates can also differ due to diet com-
position (Hobson and Clark 1993, Podlesak et  al. 2005), 

tissue type (Vander Zanden et  al. 2015), an individual’s 
physiological state (Carleton and Martínez del Rio 2005, 
Cherel et al. 2005), and energy expenditure. For instance, 
in proteinaceous tissues, structural turnover is the main 

FIGURE 5.  A diagram of the common considerations when characterizing prey with isotopic methods, which includes trophic 
discrimination and data analysis. Citations are included to provide example studies and to highlight review articles that detail each 
methodological consideration.
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driver of isotopic turnover (Carter et  al. 2019a), but in 
lipids, it appears to be influenced by energy expenditure 
(Foglia et al. 1994, Carter et al. 2018). Though there is now 
a greater understanding of isotopic turnover both among 
individuals and tissue types, uncertainty remains for less-
studied systems (Carter et al. 2019a). In addition, drivers of 
tissue-specific and macromolecule-specific turnover rates 
as well as the development of mechanistic models of iso-
topic turnover that can be applied across a broad diversity 
of taxa are needed (Carter et al. 2019a, Caut et al. 2009). 
The derivation of allometric relationships driving isotopic 
turnover rates will assist research on birds that differ in 
body mass (Carleton and Martinez del Rio 2005, Carter 
et al. 2019a).

Macromolecule routing.  While isotope-based die-
tary reconstruction is founded on the notion that “animals 
are what they eat plus a few parts per mil” (DeNiro and 
Epstein 1976), the idea that the isotopes derived from prey 
tissues are dispersed throughout a bird’s body uniformly 
(coined the “Scrambled egg theory”; Van der Merwe 1982) 
is an unrealistic (Martínez del Rio et al. 2009) and unsup-
ported assumption (Ambrose and Norr 1993). Instead, 
stable isotopes located in macromolecular pools of diets 
(e.g., proteins, lipids, carbohydrates) can be differentially 
allocated to various consumer tissues through the pro-
cess of isotopic routing (Schwarcz 1991), an effect that 
may be particularly important to consider when studying 
omnivores (Podlesak and McWilliams 2006). Thus, the 
selection of bulk avian tissue type for stable isotope anal-
ysis is not only based on the time scale of nutrient assim-
ilation but also on the sources and destination of dietary 
macromolecules. Dietary amino acids may be preferen-
tially routed to more proteinaceous tissues (Gannes et al. 
1998, Martínez del Rio and Wolf 2005) whereas less pro-
teinaceous tissues derive the bulk of their isotopic values 
from dietary carbohydrates and lipids (Gannes et al. 1998), 
though some mixing of isotopic assimilation between 
prey sources and avian tissue is expected to occur. Where 
possible, researchers should strive to understand the bi-
ochemical processes and routing resulting in the isotopic 
composition of a given tissue (Voigt et al. 2008), as known 
isotopic routing and discrimination will guide interpreta-
tion (Martínez del Rio and Wolf 2005).

Bulk stable isotope analysis. Stable isotope analysis 
of bulk tissues (e.g., muscle, blood, feather) has been the 
most common approach to avian dietary studies thus far. 
This approach has been effective because sample cost is 
relatively low, and analyses can be performed rapidly with 
high sample throughput. In addition, avian tissues used 
in non-lethal diet reconstruction studies, such as feathers 
(Kojadinovic et al. 2008) or blood (Bond and Jones 2009), 
will typically require little additional sample processing 
before bulk stable isotope analysis (but see Bond et  al. 
2010). When dietary sources are well characterized and 

isotopically distinct, and tissue-specific TDFs have been 
quantified, bulk stable isotope analysis can provide robust 
insights into the dietary history of birds (Inger and Bearhop 
2008). However, when sources and/or TDFs cannot be ad-
equately characterized, a common challenge in the inter-
pretation of bulk tissue stable isotope values is determining 
whether the variation is due to changes in diet, variability 
in baseline food web isotope values, or some combination 
of these factors (Inger and Bearhop 2008). These challenges 
are now being overcome through more complex isotopic 
analyses of specific compounds (e.g., fatty acids and amino 
acids; Whiteman et al. 2019, Twining et al. 2020) with a 
method known as compound-specific isotope analysis 
(CSIA; Lorrain et al. 2009).

Data Analysis
Mixing models, trophic position, and isotopic niche 

analyses. Isotopic values of a consumer’s tissue are a mix-
ture of the isotopes derived from their prey, thus stable iso-
tope mixing models can be used to determine the relative 
contributions of each prey taxon (Phillips 2012) (Figure 5). 
To accurately quantify prey composition, researchers must 
not only know the potential prey groups that birds eat, 
but also the isotopic values of each potential prey group, 
ensuring that the isotopic values of each group are distinct. 
If unique prey sources are not isotopically distinct, but 
belong to a shared functional group, researchers should 
consider combining these sources in downstream analyses 
(Phillips et al. 2005). While all mixing models work under 
the principle that a consumer’s isotopic ratio is propor-
tional to that of its assimilated prey, earlier iterations of 
these models have been improved by including the ele-
mental concentrations of prey sources (Phillips and Koch 
2002), considering isotopic routing (Martínez del Rio and 
Wolf 2005), and working within a Bayesian framework to 
allow for better propagation of uncertainty and use of in-
formative priors (Parnell et al. 2013). Mixing models can 
be applied to both bulk tissue stable isotope analysis and 
CSIA data to reconstruct avian diets (Johnson et al. 2019), 
and dietary predictions can be improved through the in-
clusion of data from morphological or laboratory-based 
methods (Polito et al. 2011, Chiaradia et al. 2014, Johnson 
et al. 2019).

The R-package MixSIAR provides a Bayesian mixing 
model framework that can include fixed and random effects 
as covariates explaining variability in mixture proportions, 
incorporate prior data sources, and calculate relative sup-
port for multiple models via information criteria (Stock 
et al. 2018). Another R package applying a similar Bayesian 
framework, tRophicPosition, calculates consumer trophic 
positions using stable isotopes, with one or two isotopic 
baselines, while explicitly including individual variability 
and propagating sampling error in the resulting posterior 
estimates (Quezada-Romegialli et  al. 2018). In addition, 
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the SIBER (Jackson et al. 2011) and nicheROVER (Swanson 
et al. 2015) packages allow for direct comparison of iso-
topic niche area (a proxy for trophic niches; Newsome 
et  al. 2007) and overlap (Flaherty and Ben-David 2010) 
across consumers and/or communities (Figure 5). While 
sophisticated analyses continue to be published, these 
models are only as good as the data and study design em-
ployed, and decisions about model parameterization and 
source grouping can influence results (Bond and Diamond 
2011). Phillips et al. (2014) provide a summary of the best 
practices for stable isotope mixing models in food-web 
studies that are broadly applicable to avian research.

Future Potential
As stable isotope analysis has been used in avian diet re-
construction for nearly 40 years (Schoeninger and DeNiro 
1984), many of its limitations and future directions have 
been identified—or even addressed (Post 2002, Boecklen 
et al. 2011, Wiley et al. 2017). However, one promising new 
development in the field lies in CSIA or the isotopic analysis 
of biological macromolecule groups, such as amino acids or 
fatty acids. Because specific compounds are metabolized 
through unique pathways, CSIA is an improvement on 
bulk isotopic analysis as it can quantify and account for 
variation in isotopic baselines over time and space, and the 
differential routing of dietary macromolecules throughout 
consumer tissues (Whiteman et al. 2019). For δ 15N, some 
individual amino acids (e.g., glutamic acid) undergo large 
isotopic fractionation during transamination/deamina-
tion providing greater sensitivity when estimating trophic 
position (McMahon et  al. 2015, Ohkouchi et  al. 2017). 
In contrast, other amino acids (e.g., phenylalanine) show 
little to no trophic fractionation between diet and con-
sumer allowing researchers to quantify isotopic baselines 
(McMahon et al. 2015, Ohkouchi et al. 2017). The anal-
ysis of individual “trophic” and “source” amino acids can 
thus be used to infer trophic position of avian consumers 
even in situations where baseline food web isotopic values 
are not known. For example, McMahon et al. (2019) used 
feather glutamic acid and phenylalanine δ 15N values to cal-
culate a nearly 100-year record of Pygoscelis spp. penguin 
trophic positions that explicitly accounted for variation in 
food web isotopic baselines over time, while Whiteman 
et  al (2020) quantified δ 13C and δ 15N values of various 
amino acids to investigate nutrient allocation by birds 
to their eggs within the context of the capital vs. income 
continuum.

Animals must acquire essential amino acids from their 
diet, and as these amino acids undergo little to no addi-
tional isotopic change from diet to consumer (Hayes 2001, 
McMahon et  al. 2015), δ 13C stable isotope analysis of 
amino acids (CSIA-AA) can better trace energy pathways 
from basal sources to upper-level consumers. For example, 
Johnson et al. (2019) found that while bulk stable isotope 

analysis and CSIA-AA of Seaside Sparrow (Ammospiza 
maritima) liver tissues predicted similar contributions 
of terrestrial and aquatic-derived carbon, CSIA-AA did 
so with greater precision. CSIA of fatty acids (CSIA-FA) 
have also provided a glimpse into the importance of fatty 
acid composition in the energy metabolism of migrating 
birds (Carter et  al. 2019b), and novel applications of 
δ 13C CSIA-FA promise to broaden our understanding of 
avian food webs and address the limitations of previous 
applications (Twining et al. 2020).

ALTERNATIVE DIETARY BIOMOLECULE TRACING

While DNA-based and stable isotope techniques are ap-
plicable to most study systems, researchers also trace 
other biomolecules through food webs to address more 
specialized questions in avian dietary ecology. Useful die-
tary tracers include essential biomolecules that are not 
synthesized by birds (e.g., essential lipids, amino acids, 
vitamins; Ruess and Müller-Navarra 2019), biomolecules 
that undergo little or no metabolic change post-
consumption (e.g., long-chain polyunsaturated fatty acids; 
Twining et al. 2016), and non-nutritional components in-
dicative of environmental contamination (e.g., lead, mer-
cury). Because alternative dietary tracers are often specific 
to certain environments, studies typically couple one of 
the previously described techniques with these tracers to 
draw ecological inferences about the effect of diet varia-
tion; though, continued development of mixture modeling 
approaches (e.g., quantitative fatty acid analysis [QFASA]; 
Iverson et al. 2004) and the identification of additional die-
tary tracers in new habitats (Hixson et al. 2015) will allow 
for broader application of biomolecule tracing in diet re-
construction. Analytical methods for individual dietary 
tracers are beyond the scope of this review, but have been 
discussed by others (Williams and Buck 2010, Nielsen 
et al. 2017, Majdi et al. 2018). Here, we focus on analyses 
employing multiple techniques to address objectives be-
yond diet identification.

Nutritional Components: A Healthy Diet
In addition to meeting energy demands and broad mac-
ronutrient requirements, birds must obtain essential 
biomolecules from diet to maintain optimal health and 
productivity (Klasing 1998). Essential polyunsaturated 
fatty acids have been useful as tracers because vertebrates 
tend to have a limited ability to convert these biomolecules, 
and controlled diet studies suggest that consumer fatty 
acid signatures resemble the fatty acid signatures of their 
food (Twining et al. 2016). Historically, most research in 
avian nutrition has focused on domesticated species, but 
there has been recent momentum in studying the nutri-
tional response of wild populations to changes in food 
availability resulting from anthropogenic influences and 
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climate change (Birnie-Gauvin et  al. 2017). Because diet 
items are not all nutritionally equivalent, the impacts of 
changes in food quality to avian health and fitness should 
be considered alongside prey identification in shifting 
diets through a combination of techniques. For example, 
morphological diet identification followed by fatty acid 
analysis has shown that diets containing optimal prey 
items correlate with greater concentrations of essential 
polyunsaturated fatty acids as well as metrics of survival 
and reproductive success in grassland (Zhang et al. 2020) 
and riparian songbirds (Twining et al. 2018). Combining 
bulk stable isotope analysis and fatty acid analysis enabled 
Hebert et  al. (2014) to trace prey-specific fatty acids to 
aquatic birds foraging in benthic and pelagic locations, 
thus explaining how shifts in bird diet were linked to di-
sease emergence. Similarly, combining fatty acid analysis 
and CSIA-FA showed that riparian songbirds derive essen-
tial long-chain polyunsaturated fatty acids from aquatic 
prey, even if terrestrial prey make up a greater portion of 
their diet (Twining et al. 2019). Furthermore, integrating 
morphological, stable isotope and fatty acid techniques has 
the potential to produce a more cohesive picture of avian 
feeding habits across short- and long-term scales, which 
has been influential in identifying patterns of foraging 
plasticity (Moseley et  al. 2012) and niche partitioning 
(Connan et  al. 2014). While future research will likely 
focus on the composition of fatty acids and amino acids, 
other diet-derived molecules, such as carotenoids (Witmer 
1996), may also enable the examination of diet as well as 
the resulting consequences for avian populations.

Non-Nutritional Components: A Contaminated Diet
In addition to nutritional components, non-nutritional 
chemicals and debris are also consumed directly or indi-
rectly via contaminated prey. Anthropogenically-induced 
environmental contamination is a major cause of avian 
mortality, and also generates sublethal effects that can be 
tied to declining populations. For example, lead and mer-
cury exposure can both cause immune suppression and 
reduce reproductive output (Whitney and Cristol 2018, 
Williams et  al. 2018, Vallverdú-Coll et  al. 2019), while 
brominated flame retardant exposure impacts avian court-
ship behavior, growth, and development (Guigueno and 
Fernie 2017). Environmental contaminants often biomag-
nify at higher trophic levels, therefore, combining dietary 
and contaminant analyses can lead to greater insights re-
garding exposure risk for birds among different habitats 
and feeding guilds. For instance, Barn Owls (Tyto alba) are 
most heavily exposed to anticoagulant rodenticides during 
the fall, as estimated by diet and chemical residues in 
pellets (Apodemus spp.; Geduhn et al. 2016). Regurgitates 
and pellets as well as feces have also been analyzed to de-
tect the presence of plastics ingested by wetland birds 
(Gil-Delgado et al. 2017, Reynolds and Ryan 2018), gulls 

(Lindborg et  al. 2012, Furtado et  al. 2016), and seabirds 
(Acampora et  al. 2017). Although no sampling method 
for detecting ingested plastics is perfect (Provencher et al. 
2019), tracking consumption of contaminated diet items or 
debris by applying morphological identification methods 
can support the use of avian populations as biomonitors of 
an increasingly polluted environment.

Future Potential
Bulk stable isotope methods have also been incorporated 
into studies of contaminant exposure where the effects 
of trophic position (δ 15N) and dietary source (δ 13C and 
δ 34S) influence levels of exposure. For example, positive 
correlations between mercury concentrations and δ 15N 
values show biomagnification of lead, mercury, and ar-
senic, resulting in higher contaminant loads for aquatic and 
terrestrial birds feeding at higher trophic levels (Cui et al. 
2011, Carravieri et  al. 2013, Badry et  al. 2019, Tasneem 
et al. 2020, Costantini et al. 2020). Correlations between 
mercury concentrations and δ 34S have revealed a greater 
exposure risk for gulls with a marine-sourced diet (Ramos 
et al. 2013), and the correlation between flame retardants 
and δ 13C explain the role of a terrestrially-sourced diet 
on Peregrine Falcon (Falco peregrinus) contaminant ex-
posure in urban environments (Fernie et al. 2017). Stable 
isotope reconstruction of diet over long time periods has 
also been useful in explaining Chimney Swift (Chaetura 
pelagica) diet shifts with respect to the historical use of 
DDT (Nocera et al. 2012) and in creating an accurate mer-
cury exposure trend for Herring Gulls (Larus argentatus) 
by incorporating diet shifts (Burgess et  al. 2013). These 
studies highlight the utility of combining diet and contam-
inant analyses to the source, timing, and risk of exposure 
to avian populations.

COMBINING DIETARY ANALYTICAL TECHNIQUES

While the vast majority of avian dietary studies use only 
a single method for dietary characterization, the use of 
multiple techniques within a single study, either independ-
ently or in concert, will mitigate some of the drawbacks of 
each technique and yield a more accurate understanding of 
the study system overall. There are four basic approaches 
to combining the dietary analytical techniques we have 
described. All have advantages and disadvantages, and 
all depend on assumptions related to biases inherent in 
any given application. First, researchers may present the 
results of various techniques separately and consider in 
depth what each suggests about diet (Sydeman et al. 1997, 
Lavoie et al. 2012, Alonso et al. 2014, Génier et al. 2021, 
Bumelis et al. 2021). For example, researchers could apply 
DNA-based methodologies to identify each prey taxon to 
the species level, morphological techniques to understand 
which prey life stages and sizes are often targeted, and 
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stable isotope analysis to quantify the assimilated nutrients 
that birds acquire from each prey group or life stage over 
a certain time period, thus gaining important information 
on many facets of a bird’s dietary niche. Such an approach 
would effectively mitigate the drawbacks associated with 
each technique, and in many ways, would be entirely com-
plementary as each method represents different degrees of 
dietary resolution and periods of assimilation. The net re-
sult of such analyses will be to provide a weight of evidence 
approach that will require a forensic reconstruction of diet 
similar to approaches advocated for a court of law (e.g., 
Ehleringer et al. 2020). This approach is appealing because 
all dietary evidence is presented for the reader to interpret 
on its own merits.

The second approach is to convert all dietary informa-
tion to relative probabilities of input to a given individual 
or population-level diet. Once converted to probabilities, 
they can then be formally combined as informative priors in 
Bayesian mixing models (Parnell et al. 2013). For example, 
mixing models based on bimodal isotopic data (e.g., δ 13C 
and δ 15N) for avian tissues and diet can be combined with 
morphological (Robinson et al. 2018, Johnson et al. 2020) 
or DNA-based data (Franco-Trecu et  al. 2013, Chiaradia 
et al. 2014) as informative priors. In general, the formal in-
corporation of informative priors will improve the precision 
of dietary mixing models. For example, if two prey species 
overlap isotopically, the use of informative priors based on 
non-isotopic data may better resolve these inputs in the final 
posterior probability distributions of prey inputs. However, 
it is also clear that informative priors can result in misleading 
inferences in dietary reconstructions (Franco-Trecu et  al. 
2013) and considerable attention must be paid to poten-
tial biases associated with prior information. The effect of 
an informative prior will depend heavily on sample size and 
will be especially powerful with small sample sizes. As with 
most aspects of mixing model applications, true evaluation 
of the use of priors based on controlled feeding experiments 
(e.g., Chiaradia et al. 2014) is rare. Currently, researchers are 
encouraged to present results of Bayesian mixing models 
with and without the use of informative priors.

A third approach is to incorporate various biomarkers 
directly into a multidimensional Bayesian mixing model 
framework (i.e. without necessarily employing informative 
priors). Because different biomarkers have different units 
of measurement, they must first be transformed to the 
same unitless scale by subtracting the mean and dividing 
by the standard deviation. The mixing model is then run 
in the normal fashion to discern relative dietary inputs. 
The approach of using stable isotope measurements and 
fatty acid analyses has been relatively common in marine 
systems (Neubauer and Jensen 2015), though O’Donovan 
et  al. (2018) used this approach to investigate diets of 
wolves in northern Canada using two stable isotopes (δ 13C 
and δ 15N) and three fatty acids of wolf and prey tissue 

in a five-dimensional model. While the authors found 
the combined approach was more powerful than using 
stable isotopes alone, they cautioned that adding more 
variables (i.e. more fatty acids) will not necessarily improve 
resolution.

Related to the third approach, a fourth approach 
combines various analytical approaches into a multidimen-
sional dietary niche space (Swanson et al. 2015). Though 
studies frequently derive values from the same type of assay 
(e.g., stable isotope analysis), axes can theoretically include 
other metrics such as trace element concentrations or fatty 
acid concentrations. As indicated above, incorporating dif-
ferent metrics requires that the various axes be expressed 
in quantities that are unitless (typically expressed as mean 
values divided by the standard deviation). Analytically, this 
approach has many advantages, though the main drawback 
is that it can become difficult to interpret multidimen-
sional niche volumes and again, multidimensional niche 
overlap does not necessarily mean true dietary overlap. 
Nonetheless, if the objective is to examine the evidence for 
differences in diet among individuals or populations, the 
derivation of such multidimensional niche hypervolumes 
is appealing.

Future dietary studies will continue to embrace ever 
more sophisticated forensic tools to evaluate avian nu-
tritional ecology and these approaches will benefit from 
vast improvements in web-based analytical packages. 
Nonetheless, there are key knowledge gaps that should be 
urgently addressed. First, the bulk of avian studies have 
been focused on describing, and often re-describing, the 
diets of relatively few species, thus leaving gaps in our basic 
understanding of dietary composition for many avian taxa, 
particularly Neotropical species (Lees et al. 2020). While 
studies of most bird species will benefit from using any 
of the aforementioned methods, DNA-based techniques 
seem particularly well-suited for providing a general un-
derstanding of diet for understudied species and may help 
build the foundation necessary for further hypothesis-
driven research. Similarly, most dietary studies have been 
biased toward the breeding season, and while the impor-
tance of seasonal interactions on bird populations has been 
known for some time (Marra et al. 1998), there has been 
little change in the frequency of multi-seasonal or year-
round avian studies (Marra et al. 2015). While evaluating 
diet throughout the annual cycle may appear daunting, 
stable isotope techniques allow assays of different time 
periods based on a single capture event (Gómez et al. 2018, 
Cherel et al. 2014a), with sampling of migratory birds at 
banding stations providing such tissue samples readily 
(Smith et  al. 2003). Finally, the combination of multiple 
techniques together with the recent advances in temporal 
and spatial analyses, such as Motus (Taylor et al. 2017) or 
GPS tags (Gyimesi et al. 2016), will provide additional in-
formation on foraging areas of birds, which may ultimately 
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lead to novel concepts, such as “nutritional landscapes or 
seascapes”, that describe avian diets and aid in conservation 
efforts (Genier et al. 2021, Bumelis et al. 2021). We are, thus, 
in an exciting era whereby the optimization and integra-
tion of techniques and their applications for revisiting pre-
vious studies and answering novel ornithological questions 
will likely lead to a stronger understanding of avian trophic 
ecology and a greater appreciation for the roles that birds 
serve in changing ecosystems around the world.
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