

1 Journal: Ecology

2 Manuscript type: The Scientific Naturalist

3

4 Running Head: The Scientific Naturalist

5

6

7 **Rare hybrid solves “genetic problem” of linked plumage traits**

8

9 Marcella D. Baiz¹*, Andrew W. Wood¹, David P. L. Toews¹

10

11 ¹Department of Biology, Pennsylvania State University, University Park, PA, USA

12 *Corresponding author. E-mail: marcelladbaiz@gmail.com

13

14 Manuscript received 16 July 2020; revised 23 December 2020; accepted 21 March 2021.

15

16 Keywords: Agouti signaling protein, *ASIP*, pigmentation, hybrid zone, wood warblers,

17 *Vermivora*, speciation

18

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/ECY.3424

This article is protected by copyright. All rights reserved

19 We study hybrids, in part, because they are broken. Not in the sense that they are literally
20 broken—although in many cases they do have low fitness compared to parental species—but
21 because the recombination that occurs with multiple generations of hybridization breaks up the
22 genomes of two species and puts it back together in unpredictable ways. This genetic mixing
23 allows researchers to associate regions of the genome with phenotypes that differ between the
24 parental species. Research in two hybridizing songbird species, the golden-winged warbler
25 (*Vermivora chrysoptera*) and blue-winged warbler (*V. cyanoptera*), have allowed us to do just
26 that for plumage pigmentation traits (Toews et al. 2016; Baiz et al. 2020). Natural recombinant
27 *Vermivora* hybrids also allow researchers to tease apart how different parental plumage traits
28 affect processes of hybridization and diversification.

29 The inheritance of plumage pigmentation in *Vermivora* warblers has had a long history.
30 Early in the twentieth century, John Treadwell Nichols (1908) hypothesized that throat
31 coloration follows Mendelian inheritance in hybrid populations. Natural variation among
32 parental species and their hybrids (Parkes 1951) and recent genomic sequencing (Toews et al.
33 2016, Baiz et al. 2020) has corroborated this prediction. Specifically, the presence/absence of the
34 black throat patch, and the usually co-occurring black face mask (Figure 1a), is linked to a small
35 ~10-15 kb region upstream—in the presumed promoter region—of the Agouti signaling protein
36 (*ASIP*) gene on chromosome 20, a key player in the melanin (i.e. black) pigmentation pathway.

37 In *Vermivora* warblers, throat patch color and face mask color are nearly perfectly
38 correlated ($n = 222$ wild-caught individuals for which we examined full plumage traits), meaning
39 that it was impossible for previous genomic analyses to tease apart the connection between *ASIP*
40 variation and throat versus mask coloration. In golden-winged warblers, and in certain hybrids,
41 individuals that have a black throat patch almost always have a broad black face mask (Figure

42 1a). In blue-winged warblers, and in other hybrids, individuals have a plain throat and nearly
43 universally lack the black face mask (Figure 1a). Consequently, previous studies have assumed
44 the two phenotypes—mask and throat melanation—are controlled by exactly the same locus
45 (e.g., Short 1963), or have assumed perfect linkage, disregarding one plumage trait or the other
46 in scoring hybrid admixture (e.g., Gill 1980).

47 However, there exists at least one specimen exhibiting a rare, mismatched throat/mask
48 phenotype. In 1951, Kenneth Parkes reported a *Vermivora* individual with a black face mask, but
49 lacking a black throat patch that was collected in 1934 from an area of hybridization in southern
50 Michigan. He speculated that due to the close correlation in throat and mask melanation, if each
51 trait is controlled by a separate locus, they would need to be tightly linked such that
52 recombination rarely breaks up their association. Lacking the genetic tools to test his hypothesis,
53 Parkes (1951) proposed the linkage of the phenotypes as a “genetic problem for future study”.

54 Here, we document our own recent observation of a hybrid *Vermivora* individual in
55 central Pennsylvania that also carries this rare mismatched phenotype, exhibiting a black face
56 mask but lacking a black throat patch (Figure 1b). Unlike Parkes, however, we now employ
57 whole genome sequencing of this mismatched hybrid and compare it to other matched hybrids
58 and parental individuals to address this “genetic problem” using modern tools.

59 Despite striking differences in their plumage coloration, blue-winged warblers and
60 golden-winged warblers exhibit exceptionally high levels of genetic similarity (Toews et al.
61 2016). This is likely due to a long history of hybridization, and hybrids can be found everywhere
62 the breeding ranges of the parental species overlap, along the Great Lakes of the Eastern USA
63 and across the Appalachian Mountains. Their hybrids exhibit a range of plumage phenotypes
64 mixing various characteristics of the parental species (Toews et al. 2016) (Figure 1). Further, in

65 these areas, the parental species can be found in very similar habitats (Will 1986), likely
66 facilitating hybridization. Recent declines in populations of golden-winged warblers, and in
67 some areas their gradual replacement by blue-winged warblers (Bennett et al. 2017), suggest the
68 shifting hybrid zones may be important in shaping their evolutionary trajectories.

69 We opportunistically observed this mismatched hybrid on June 8, 2020 in Huntingdon
70 County, Pennsylvania (40.651635, -77.942584), within a region that has both parental
71 phenotypes and “typical” (matched) hybrids. We used a recorded golden-winged warbler song
72 playback to lure the individual into a mist net. Upon capture, we assessed its plumage using the
73 scoring criteria of Gill (1980) with the addition of the following traits: mask, eyeline, and
74 mustache color. We also affixed a USGS aluminum band to the bird (band no. 283030117) and
75 attained a blood sample from the brachial vein for genetic analysis.

76 With the exception of throat and eyeline plumage, we assigned golden-winged warbler
77 scores in all of the plumage traits assessed for the mismatched hybrid (Appendix S1: Table S1).
78 The mismatched hybrid exhibits a plumage score of 35, where the maximum score (38)
79 represents the golden-winged warbler plumage phenotype and the minimum score (0) represents
80 the blue-winged warbler plumage phenotype. In *Vermivora* hybrids, plumage scores are closely
81 correlated with genetic scores of admixture (Toews et al 2016), so the mismatched hybrid is not
82 likely an early-generation hybrid, but likely a result of multiple generations of backcrossing into
83 golden-winged warblers.

84 Because the mismatched hybrid exhibits mostly golden-winged warbler plumage traits
85 (and likely genetic background), but shares the non-melanated throat patch of blue-winged
86 warblers, we reasoned it may be possible to identify the genomic region underlying the face
87 mask separate from the throat patch by quantifying transitions in ancestry from the parental

88 species in the genome of this hybrid. We extracted the mismatched hybrid's DNA and used
89 whole genome re-sequencing following the approach described in Toews et al. (2016) to quantify
90 genomic variation around *ASIP*—a region where parental species exhibit fixed differences—by
91 aligning sequences to the yellow-rumped warbler genome assembly (NCBI accession
92 #PRJNA325157, Baiz et al. 2021). We then compared genotypes in this region for the
93 mismatched hybrid to genotypes from matched hybrids and parental individuals previously
94 sequenced in Toews et al. (2016) and Baiz et al. (2020). For the mismatched hybrid, we obtained
95 47 million paired reads, resulting in 10X coverage across chromosome 20.

96 Consistent with our previous work (Baiz et al. 2020), we identified a ~10 kb region
97 upstream of *ASIP* where hybrids that exhibit a black throat share ancestry with golden-winged
98 warblers (i.e. “matched hybrids” in Figure 2). Within this region, we identified 8 SNPs (between
99 4,247,547 bp – 4,252,746 bp) where black-throated individuals are homozygous for the golden-
100 winged allele and—consistent with homozygous recessive inheritance of the trait (Parkes
101 1951)—plain-throated individuals are either heterozygous or homozygous for the blue-winged
102 allele (Figure 2b). We posit that the SNPs that with this 5 kb region are likely part of the warbler
103 *ASIP* throat-color gene promoter. Moreover, unlike all black-throated birds, the mismatched
104 hybrid was nearly uniformly heterozygous for all SNPs in this presumed promoter region.

105 Importantly, we also identified a single SNP (4,245,971 bp) where the mismatched
106 hybrid and other black-masked individuals are homozygous for the golden-winged allele, and
107 non-masked individuals are either heterozygous or homozygous for the blue-winged allele
108 (Figure 2b). We posit that this SNP—only 1.5 kb upstream of the SNPs linked to throat
109 coloration—likely falls within the warbler *ASIP* mask-color gene promoter. Together with the
110 observed high rate of linkage between the throat and mask phenotype (>99.5% of all *Vermivora*),

111 and the previously described association between both phenotypes and *ASIP* (Toews et al. 2016,
112 Baiz et al. 2020), these results support the hypothesis of extremely tight genetic linkage between
113 two separate loci controlling these traits and suggest the mask promoter is adjacent to the throat
114 promoter upstream of *ASIP*.

115 Discerning the genomic position underlying the mask separately from the throat
116 phenotype in *Vermivora* raises intriguing questions about the mechanisms underlying plumage
117 differentiation and diversification in wood warblers. Bold plumage patches like those discussed
118 here may serve as signals of dominance, mate quality and species recognition (Santos et al. 2011,
119 Møller 1990, Uy et al. 2009). Although reproductive isolation is generally weak in *Vermivora*
120 and social pairs involving hybrids are common (Vallender et al. 2007), the presence/absence of
121 the melanic plumage patches may influence male reproductive success in the hybrid zone. In a
122 previous study of golden-winged warblers, males that were experimentally manipulated to
123 remove their black throat patch and mask largely lost their breeding territories and failed to
124 obtain mates (Leichty & Grier 2006). This suggests hybrid males lacking melanic patches that
125 otherwise resemble golden-winged warblers may be outcompeted by golden-winged males,
126 rejected by golden-winged females, or both. Consistent with this, Confer et al. (2020) recently
127 documented that phenotypic hybrids were less likely to have social mates during the breeding
128 season. While this study did not consider non-social mates (*i.e.* extra pair copulations), it leaves
129 open the question of reduced hybrid fitness.

130 In this case, we were not able to quantify the reproductive success of the mismatched
131 hybrid. However, we speculate that it could be greater for mismatched than for “matched”
132 hybrids: because they exhibit one clear golden-winged trait (*i.e.* melanic mask) and one clear
133 trait of blue-winged warblers (*i.e.* a pale throat), mismatched males may be appealing to breeding

134 females of both species. We note we observed a female golden-winged warbler within the
135 presumed breeding territory of the mismatched hybrid, although we do not know if they were
136 paired. Similarly, mismatched males may not be perceived as a conspecific threat by territorial
137 males, possibly resulting in higher rates of extra-pair copulations involving mismatched males.
138 Thus, when linkage between these signal traits is broken, hybridization may be facilitated.

139 In general, wood warblers exhibit high levels of plumage differentiation between closely
140 related species, which often show modular variation in color across plumage patches. A genetic
141 architecture involving multiple regulatory regions that each control deposition of pigments in
142 different plumage patches may allow the high rates of warbler plumage differentiation to be
143 explained by the acquisition of few mutations. Further, tight genetic linkage between these
144 regulatory regions may ensure co-inheritance of species-specific traits, making it less likely they
145 get broken up by hybridization and recombination. Thus, tightly-linked, modular control of
146 plumage patch color may not only provide a mechanism for rapid plumage diversification but
147 may also promote pre-mating reproductive isolation, as discussed above. Such a compound
148 mechanism may help explain the extremely rapid rate of speciation in this colorful songbird
149 family (Oliveros et al. 2019).

150 Further field studies are necessary to discern the role of plumage signals in *Vermivora*
151 hybridization. For example, it may be possible to test the effects of multiple signal traits on
152 intrasexual communication in the hybrid zone by using artificial mounts with differently colored
153 plumage patches to challenge territorial males. Although our results suggest modular control of
154 melanistic plumage patches via regulation of ASIP in *Vermivora*, it will also be necessary to
155 perform functional genetic tests of this hypothesis.

156 A recent study investigating the genomics of plumage traits in another wood warbler
157 hybrid zone, between hermit (*Setophaga occidentalis*) and Townsend's (*S. townsendi*) warblers,
158 linked the presence/absence of the black face mask to a large (200 kb) region on chromosome 20
159 (Wang et al. 2020). Importantly, this region also encompasses the small region we predict here is
160 the *Vermivora ASIP* mask promoter. Further, across *Setophaga* sister-species pairs,
161 differentiation in melanic plumage traits is mirrored by repeated differentiation near *ASIP* (Baiz
162 et al. 2021). Thus, comparative genomic studies across wood warblers may help elucidate the
163 relationship between the genomic architecture of regulatory variation in *ASIP*, its control of
164 melanic plumage traits, and mechanisms of species differentiation.

165 Our observation highlights the value of natural hybrids to the study of plumage (and
166 other) phenotypes. Individual hybrids, like this rare recombinant, are unique mosaics that carry
167 different combinations of parental ancestry. Within hybrids, when breakpoints in this ancestry
168 occur between genomic regions underlying different phenotypes, it may be possible to associate
169 these phenotypes with precise genetic loci.

170

171 Acknowledgments

172 We thank Jon Kauffman for guidance on locating *Vermivora* in Huntingdon County, Laura
173 Porturas and Lan-Nhi Phung for assistance in the field and lab, respectively, Joe Harding for
174 permission to work at Stone Valley Recreation Area, and Brett Benz for photographs of the 1934
175 hybrid specimen at the University of Michigan Museum of Zoology. Genotyping was supported
176 by funding from the Cornell Lab of Ornithology and MDB was supported by the NSF
177 Postdoctoral Research Fellowship in Biology Program under grant no. 2010679. Work was
178 conducted under permits from the US Fish and Wildlife Service (#24034 to DPLT) and from the

179 Pennsylvania Game Commission, and followed ethical guidance of the Pennsylvania State
180 University Institutional Animal Care and Use Committee (PROTO201900879). Fieldwork,
181 conceptualization and investigation, MDB and DPLT; Funding and resources, DPLT; Lab work,
182 AWW; Writing, MDB; Editing and revisions, all authors. The authors declare no conflicts of
183 interest.

184

185 **Supporting Information**

186 Additional supporting information may be found online at: [link to be added in production]

187

188 **Open Research**

189 Sequencing data are available from the National Center for Biotechnology Information Sequence

190 Read Archive: <https://www.ncbi.nlm.nih.gov/bioproject/PRJNA325126/>

191

192 **Literature Cited**

193 Baiz, M. D., G. R. Kramer, H. M. Streby, S. A. Taylor, I. J. Lovette, D. P. L. Toews. 2020.

194 Genomic and plumage variation in *Vermivora* hybrids. The Auk 137: ucaa027.

195 <https://doi.org/10.1093/auk/ucca027>

196 Baiz, M. D., A. W. Wood, A. Brelsford, I. J. Lovette, and D. P. Toews. 2021. Pigmentation

197 Genes Show Evidence of Repeated Divergence and Multiple Bouts of Introgression in

198 Setophaga Warblers. Current Biology 31: 643-649. <https://doi.org/10.1016/j.cub.2020.10.094>

199 Bennett, R. E., S. Barker Swarthout, J. S. Bolsinger, A. D. Rodewald, K. V. Rosenberg, and R.

200 W. Rohrbaugh. 2017. Extreme genetic similarity does not predict non-breeding distribution

201 of two closely related warblers. Journal of Field Ornithology 88:156–168.

202 Confer, J. L., C. Porter, K. R. Aldinger, R. A. Canterbury, J. L. Larkin, and D. J. McNeil Jr. 2020.

203 Implications for evolutionary trends from the pairing frequencies among golden-winged and

204 blue-winged warblers and their hybrids. *Ecology and Evolution*, 10:10633–10644.

205 Gill, F. B. 1980. Historical aspects of hybridization between Blue-winged and Golden-winged

206 Warblers. *The Auk* 97:1–18.

207 Leichty, E. R., and J. W. Grier. 2006. Importance of facial pattern to sexual selection in Golden-

208 winged Warbler (*Vermivora chrysoptera*). *The Auk* 123:962–966.

209 Møller, A. P. 1990. Sexual behavior is related to badge size in the house sparrow *Passer*

210 *domesticus*. *Behavioral Ecology and Sociobiology* 27:23–29.

211 Nichols, J. T. 1908. Lawrence's and Brewster's Warblers and Mendelian inheritance. *The Auk*

212 25:86.

213 Oliveros, C. H., D. J. Field, D. T. Ksepka, F. K. Barker, A. Aleixo, M. J. Andersen, ... and G. A.

214 Bravo. 2019. Earth history and the passerine superradiation. *Proceedings of the National*

215 *Academy of Sciences* 116:7916–7925.

216 Parkes, K. C. 1951. The genetics of the Golden-winged X Blue-winged Warbler complex. *The*

217 *Wilson Bulletin* 63:5–15.

218 Santos, E. S., D. Scheck, and S. Nakagawa. 2011. Dominance and plumage traits: meta-analysis

219 and metaregression analysis. *Animal Behaviour* 82:3–19.

220 Short Jr, L. L. 1963. Hybridization in the wood warblers *Vermivora pinus* and *V. chrysoptera*.

221 *Proceedings of the XIII International Ornithological Congress* 13:147–160.

222 Toews, D. P., S. A. Taylor, R. Vallender, A. Brelsford, B. G. Butcher, P. W. Messer, and I. J.

223 Lovette. 2016. Plumage genes and little else distinguish the genomes of hybridizing warblers.

224 *Current Biology* 26:2313–2318.

225 Uy, J. A. C., R. G. Moyle, C. E. Filardi, and Z. A. Cheviron. 2009. Difference in plumage color
226 used in species recognition between incipient species is linked to a single amino acid
227 substitution in the melanocortin-1 receptor. *The American Naturalist* 174:244–254.

228 Vallender, R., V. L. Friesen, and R. J. Robertson. 2007. Paternity and performance of Golden-
229 winged Warblers (*Vermivora chrysoptera*) and Golden-winged X Blue-winged Warbler (*V.*
230 *pinus*) hybrids at the leading edge of a hybrid zone. *Behavioral Ecology and Sociobiology*
231 61:1797–1807.

232 Wang, S., S. Rohwer, D. R. De Zwaan, D. P. L. Toews, I. J. Lovette, J. Mackenzie, and D. E.
233 Irwin. 2020. Selection on a small genomic region underpins early differentiation in multiple
234 color traits between two warbler species. *Evolution Letters* 4:502-515.

235 <https://doi.org/10.1002/evl3.198>.

236 Will, T. C. 1987. The behavioral ecology of species replacement: Blue-winged and Golden-
237 winged warblers in Michigan. Dissertation, University of Michigan.

238

239 **Figure 1.** Plumage traits of *Vermivora* warblers and their hybrids. **a)** Typical (matched) plumage
240 characteristics of parental species and their hybrids. Presence/absence of the melanic face mask
241 and throat patch (referenced by triangles) are highly correlated and individuals that exhibit a
242 broad melanic face mask almost always exhibit a melanic throat patch and vice versa.
243 Illustrations by Liz Clayton Fuller. **b)** Rarely, hybrids exhibit a mismatched throat/mask
244 phenotype, like this individual we observed here. We estimate this mismatched phenotype to
245 occur at a frequency of <0.5% in hybrid populations.

246

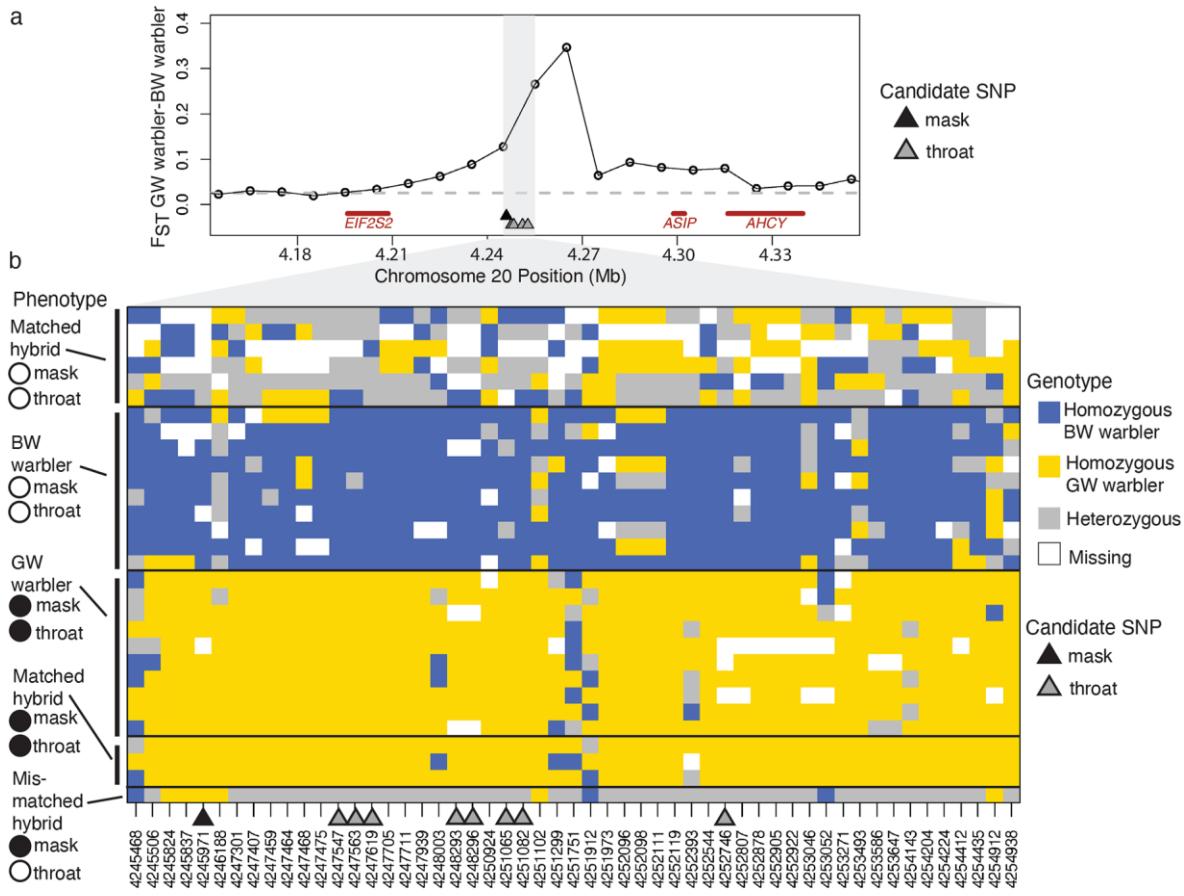
247 **Figure 2.** Genomic variation near the Agouti signaling protein (*ASIP*) gene on chromosome 20
248 underlies mask and throat coloration in *Vermivora* warblers. **a)** Genetic differentiation estimated
249 in 10 kb windows across the region highly differentiated between parental species (Toews et al.
250 2016). Mask and throat color were linked to a small ~10 kb region upstream of *ASIP* (light gray
251 window ~4.245 Mb – 4.255 Mb, Baiz et al. 2020). Protein coding genes are labeled in red, and
252 locations of candidate SNPs are denoted by triangles. The dashed gray line indicates mean F_{ST}
253 across chromosome 20. **b)** Genotypes at highly differentiated SNPs ($F_{ST} > 0.7$) for parental
254 species and hybrids within the candidate 10 kb region. Mask and throat color phenotypes are
255 shown at left. Locations of candidate SNPs for the mask and throat phenotype were determined
256 by comparing masked to non-masked individuals and black-throated to plain-throated
257 individuals, respectively, as described in the text (BW=blue-winged, GW=golden-winged
258 warblers).

259

a

Golden-winged warbler

Blue-winged warbler


Matched hybrid

b

Rare mismatched hybrid

