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Abstract

Parasites can play a role in speciation, by exerting different selection pressures on
different host lineages, leading to reproductive barriers in regions of possible inter-
breeding. Hybrid zones therefore offer an ideal system to study the effect of para-
sites on speciation. Here, we study a hybrid zone in the foothills of the Rocky
Mountains where two yellow-rumped warbler subspecies, Setophaga coronata coro-
nata and S. c. auduboni, interbreed. There is partial reproductive isolation between
them, but no evidence of strong assortative mating within the hybrid zone, suggest-
ing the existence of a postzygotic selection against hybrids. Here, we test whether
haemosporidian parasites might play a role in selecting against hybrids between S.
c. coronata and S. c. auduboni. We screened birds from five transects across the hy-
brid zone for three phylogenetic groupings of avian haemosporidians Plasmodium,
Haemoproteus and Leucocytozoon parasites and quantified intensity of infection.
Contrary to our prediction, hybrids did not have higher haemosporidian parasite
prevalence. Variation in Haemoproteus prevalence was best explained by an interac-
tion between a birds’ hybrid index and elevation, while the probability of infection
with Leucocytozoon parasites was only influenced by elevation. We also found no
significant difference in the diversity of haemosporidian lineages between the war-
bler subspecies and their hybrids. Finally, intensity of infection by Haemoproteus in-
creased significantly with elevation, but was not significantly linked to birds’ hybrid
index. In conclusion, our data suggest that haemosporidian parasites do not seem to

play a major role in selecting against hybrids in this system.
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1 | INTRODUCTION

Parasite-mediated divergent selection can be a strong and wide-
spread mechanism of ecological speciation (Summers et al., 2003).
It is powerful, as some parasites impose large fitness costs on their
hosts, and widespread, as virtually all animals are hosts to a high
diversity of parasites (Price, 1980). Variation in infection among
populations of the same host species might lead to the evolution of
divergent resistance gene combinations and to parasite-mediated
divergent selection (Karvonen & Seehausen, 2012). In areas where
divergent host lineages hybridize, recombination across genera-
tions of hybrids might break up assemblages of coadapted genes,
reducing hybrid fitness relative to parental genotypes (Rundle &
Whitlock, 2001). In cases where heterogeneous infections are
not the primary cause of divergence, the same mechanism might
also reinforce the reproductive isolation by imposing strong se-
lection against hybrids. In addition, if there is strong specificity
between parasites and their host genotype, the latter may have
evolved specific resistance. Hybrids could thus be vulnerable to
parasites of both parental taxa, yet lack the resistance that paren-
tal species have coevolved with their specific parasites (Wolinska,
Keller, Manca, & Spaak, 2007). On the other hand, in some sys-
tems, hybrids benefit from heterosis, as heterozygous individuals
have access to a wider range of resistance alleles (MacDougall-
Shackleton, Derryberry, Foufopoulos, Dobson, & Hahn, 2005;
Niskanen et al., 2014).

Several cases of parasite-mediated selection against hybrids
have been documented in the literature (Moulia, 1999). For example,
crosses of mallards and black ducks are more frequently infected by
Sarcocystis parasites (Mason & Clark, 1990). In the house mice, Mus
musculus musculus and M.m. domesticus (Derothe, Le Brun, Loubes,
Perriat-Sanguinet, & Moulia, 2001), hybrids are parasitized more
by nematodes and cestodes than the parental subspecies (Moulia
et al,, 1991; Sage, Heyneman, Lim, & Wilson, 1986). Wolinska, Keller,
Bittner, Lass, and Spaak (2004) found that the protozoan gut parasite
Caullerya mesnili decreases the fitness of Daphnia galeata x hyalina hy-
brids, which are significantly more infected than the parental species.

Haemosporidian parasites, and in particular avian malaria para-
sites, are an important model for the study of the evolution of host-
parasites relationships. Their high diversity (at least 900 lineages,
Bensch, Hellgren, & Pérez-Tris, 2009) and their variability in viru-
lence make them good candidates to investigate parasite-mediated
divergent selection. Haemosporidian parasites are also very com-
mon in many bird species (Ayadi et al., 2017; van Rooyen, Lalubin,
Glaizot, & Christe, 2013; Swanson, Lyons, & Bouzat, 2014) and
can reach high prevalence, for example in great tits (Parus major)
where prevalence was as high as 91% in some Swiss populations
(Glaizot et al., 2012). These parasites are represented by the gen-
era Plasmodium, Haemoproteus, and Leucocytozoon and are trans-
mitted by dipteran vectors (Valkitnas, 2005). There is evidence
that avian malaria has a significant effect on the fitness of infected
birds by increasing mortality (Atkinson, Dusek, Woods, & lko, 2000;
Marzal, Bensch, Reviriego, Balbontin, & De Lope, 2008; Sol, Jovani,
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& Torres, 2003) and decreasing reproductive success (Knowles,
Palinauskas, & Sheldon, 2010; MacDougall-Shackleton et al., 2005;
Marzal, de Lope, Navarro, & Moller, 2005; Merino, Moreno, Jose
Sanz, & Arriero, 2000). However, counter-examples exist where no
strong effect of avian malaria on fitness has been found (Kilpatrick
et al., 2006), suggesting that the effects may be dependent on the
lineages and host combinations considered. By reducing the fitness
of hybrids more severely than the fitness of parental species, hae-
mosporidian parasites have the potential to drive speciation in their
hosts, as it has been suggested in macaques (Wheatley, 1980).

To investigate parasite-mediated speciation, tension zones,
a particular type of hybrid zone, are relevant. Tension zones are
characterized by a relatively narrow width and stabilized by a bal-
ance between selection against the hybrids within the zone and
dispersal of parental types into the zone (Barton & Hewitt, 1985).
The sources of selection against hybrids in most tension zones
are unknown, although the role of parasites in this context has
not been extensively studied (Alexandrino et al., 2005; Singhal &
Moritz, 2012).

One well-characterized hybrid zone where hybrid fitness is un-
clear is between myrtle warblers (Setophaga coronata coronata) and
Audubon’s warblers (S. c. auduboni) (Figure 1). These two subspecies
interbreed in a narrow region across the Canadian Rocky Mountains
(Hubbard, 1969). Brelsford and Irwin (2009) tested birds in the hybrid
zone for evidence of assortative mating, and found a pairing pattern
consistent with random or very weak assortative mating. Brelsford
and Irwin (2009) also found that selection against hybrids is neces-
sary to maintain the observed linkage disequilibrium and cline width.
The mechanisms of this inferred selection are still unclear. Here, we
test the hypothesis that haemosporidian parasites may play a role in
the selection against S. coronata x auduboni hybrids.

Patterns of prevalence and diversity of haemosporidian parasites
can vary according to several different biotic and abiotic factors, yet
the underlying factors are still poorly understood. Scordato and
Kardish (2014) showed that host species is one of the main predictors
of prevalence and diversity, and a better predictor than geography.
However, environmental factors also seem to be important, partic-
ularly as they will affect vector ecology thereby generating spatial
structuring of haemosporidian occurrence (Cumming et al., 2013;
Ferraguti et al., 2018; Loiseau et al., 2012; Mendes, Piersma, Lecoq,
Spaans, & Ricklefs, 2005; Wood et al., 2007). In blue tits (Cyanistes
caeruleus), for example, in addition to be specific to each parasite
lineage, malaria prevalence seems to vary between host populations,
suggesting that either coevolutionary history or environmental vari-
ables influence prevalence (Sz6llési et al., 2011). Elevation can also
influence haemosporidian prevalence, because environmental vari-
ables such as temperature or plant communities change with eleva-
tion (Imura et al., 2012; Latta & Ricklefs, 2010; van Rooyen et al.,
2013; Zamora-Vilchis, Williams, & Johnson, 2012).

Here, we investigated the potential role of haemosporidian
parasites in selecting against S. c. coronata x auduboni hybrids.
The data set we used is extensive in sample size and geographic
area, composed of five independent transects, which allowed
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FIGURE 1 Migrating yellow-rumped warblers (photograph credit: David P. L. Toews)

us to test hypotheses regarding the geographical structuring of
haemosporidian distribution. By amplifying and sequencing a
fragment of haemosporidian cytochrome b in blood samples from
warblers in the hybrid zone, we assessed the infection status and,
when possible, identified the parasite lineages present. Using a
quantitative PCR protocol, we measured the intensity of infection
(parasitaemia) by the most common lineage in the hybrid zone.
By these means, we determined whether hybrids had higher hae-
mosporidian prevalence and parasitaemia than pure S. c. coronata
and S. c. auduboni, which could be expected if hybrids were less
adapted to resist haemosporidian infection. As hybrids may in-
herit specialist parasites from both parental subspecies, we also
tested for higher haemosporidian lineage diversity in hybrids.
However, differences in infections may be affected by environ-
mental parameters as well as bird ancestry, so we also assessed
how geographical variables, specifically elevation, influenced hae-

mosporidian prevalence in myrtle and Audubon’s warblers.

~

2 | MATERIALS AND METHODS

2.1 | Field sampling

The majority of samples (n = 196 S. c. coronata, n = 193 S. c. auduboni
and n =228 hybrids) used for this study were initially collected by
Brelsford and Irwin (2009). Briefly, we captured warblers defend-
ing their territories on their breeding grounds (that is, mostly males),
along five transects across the hybrid zone and additional allopatric
sites, in Alberta and British Columbia (Figure 2). We took several mor-
phometric measurements and scored five plumage color traits that
differ between S. c. coronata and S. c. auduboni, following Hubbard’s
(1969) hybrid index: O for a coronata-like trait, 2 for an auduboni-like
trait, and 1 for intermediate states. The hybrid index is the mean of
the scores of the different traits, listed in Supporting Information
Table S1. We excluded the sixth trait used by Hubbard (1969), tail
pattern, from analysis due to concerns over its repeatability. We also

Alberta

.

FIGURE 2 Map of sampling sites (black dots). Letters indicate the five transects
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excluded auricular color from analysis in females, because in both
subspecies female auricular patches were brown rather than black
or gray.

In addition, we also sampled yellow-rumped warblers during
autumn migration in 2015 (n = 131), between August 28th and
September 12th near Barrier Lake (51.023591, -115.060657, eleva-
tion: ca. 1,400 m) in the Kananaskis region of Alberta, Canada. The
aim of this new sampling was to catch hatch-year birds starting their
first migration to compare their parasite lineages composition to
that of birds that have already been on wintering ground. This site is
close to the geographic center of the hybrid zone, but birds captured
during migration may have come from distant breeding locations.
We captured migrating yellow-rumped warblers using mist nets with
song and call playback, and determined the age of the birds (hatch-
year/after hatch-year) by examining skull ossification (Norris, 1961).
We also took morphometric measurements. The use of the full hy-
brid index (Hubbard, 1969) is more difficult when the birds do not
display their breeding plumage, so in this case, we used a genomic
hybrid index (see below). Blood samples were obtained by brachial
venipuncture and stored in Queen’s lysis buffer (Seutin, White, &
Boag, 1991).

2.2 | Genomic hybrid index

We extracted genomic DNA from each sample either using a
standard phenol-chloroform extraction or with a Qiagen® DNeasy
kits (Qiagen, Valencia, CA) and determined the final concentra-
tion of each extraction using Qubit Fluorometric Calibration (QFC;
Invitrogen, Carlsbad, CA). To estimate a high-resolution genomic
hybrid index, we used a double digest restriction association DNA
sequencing (ddRAD) protocol following Peterson, Weber, Kay,
Fisher, and Hoekstra (2012) with the modifications outlined in
Campagna, Gronau, Silveira, Siepel, and Lovette (2015). We se-
quenced the two lanes of an lllumina HiSeq 2000 (150 bp, single-
end) at the Cornell University Life Sciences Core Laboratories
Center (Ithaca, NY).

We demultiplexed sequencing reads within each index group
using the barcode-splitting program Sabre (https://github.com/na-
joshi/sabre), allowing for one mismatch in the barcode plus enzyme
cut-site sequence. We used BOWTIE2 (Langmead & Salzberg, 2012)
to map each of the individual reads to a build of the myrtle warbler
genome (Toews, Brelsford, Grossen, Mila, & Irwin, 2016), using the
“very sensitive local” set of alignment presets. For SNP discovery
and variant calling, we used the UnifiedGenotyper in GATK (DePristo
et al., 2011), and used GATK and VCFtools (Danecek et al., 2011) to
apply the quality filters outlined in Toews, Taylor et al. (2016). We
coded genotypes with a Phred-scaled quality lower than 20 as miss-
ing data and excluded loci with more than 30% missing data and/or a
minor allele frequency of less than 1%.

To estimate hybrid ancestry, we used the program STRUCTURE
(version 2.3.4, Falush, Stephens, & Pritchard, 2003). For this analysis,
we focused on markers that were spaced at least 10 kb apart using
the “thin” function in VCFTools (Danecek et al., 2011). We then ran

STRUCTURE on this subset of SNPs (n = 4,661 loci) with K= 2 for
100,000 MCMC steps following a burn-in of 100,000 iterations.

2.3 | Determination of haemosporidian parasites

Infections by haemosporidian parasites were diagnosed by perform-
ing nested PCR as described in Jenkins, Delhaye, and Christe (2015),
modified from Hellgren, Waldenstréom, and Bensch (2004). Briefly,
the first PCR round was conducted using HaemNF1 and HaemNR3
primer pair in order to amplify a 617 bp conserved region of the
haemosporidian (Plasmodium, Haemoproteus, and Leucocytozoon)
cytochrome b (cytb) gene. We then amplified a 479 bp region from
1 ul of the product of the first PCR round, using the Plasmodium-
and Haemoproteus-specific HaemF and HaemR2 primers pair and
the Leucocytozoon-specific HaemFL and HaemR2L primers pair.
PCR products were then visualized after agarose gel electrophoresis
(2%). Positive PCR products were sequenced in both directions by
Sanger sequencing (Microsynth AG, Balgach, Switzerland).

Double-peak(s) in a chromatogram meant that several haemo-
sporidian lineages were present in the sample (Bensch et al., 2009);
these mixed infections were excluded from diversity analyses.
Sequences were blasted against the GenBank® and MalAvi data-
bases (Bensch et al., 2009). Sequences that did not match at 100%
of identity with any deposited sequence were named SETCORO3 to
SETCOR19.

2.4 | Sequence analyses and phylogenetic
reconstruction

In order to compute phylogenetic diversity metrics, we recon-
structed a phylogeny of the sampled haemosporidian lineages.
We collated forward and reverse sequences using MEGA7 (Kumar,
Stecher, & Tamura, 2016; Tamura, Dudley, Nei, & Kumar, 2007)
and aligned the consensus sequences with ClustalW (Thompson,
Higgins, & Gibson, 1994). We determined the best model of nucleo-
tide substitution with the function “phymltest” (Guindon & Gascuel,
2003; Posada & Crandall, 2001) implemented in the package “ape”
(Paradis, Claude, & Strimmer, 2004) in R version 3.1.1 (R Core Team,
2014). Phylogenetic trees were constructed using PhyML version
3.0 (Guindon et al., 2010) under the GTR +I" model of nucleotide
substitution. The topology robustness was assessed with 1,000
bootstraps.

2.5 | Parasitaemia measurements

We performed quantitative PCR on samples infected by hDEN-
PENO2, the most prevalent haemosporidian lineage in our sam-
ples, to measure relative parasitaemia. In order to do so, we
designed a pair of primers to amplify a 101 bp fragment of
Haemoproteus cytb mitochondrial gene: DENPENO2_cytb_Fw
(5'-CCGCTTTTATGGGTTATGTATTAC-3’) and DENPENO2_
cytb_Rev (5'-CCATGAAACAAGTCCAGGTATA-5') and a spe-
cific TagMan probe DENPENO2_cytb_Pr (FAM-cytb-BHQ1: 5’
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-AACGGTTGCACCCCAGAAACTCATTTG-3'). To wuse as an
internal control, we designed a pair of primers to amplify a
115 bp fragment of S. c.coronata and auduboni RPL30 nu-
clear gene: DcRPL30F (5-GTCTGCAAGTGCTGAATCCT-3')
and  DcRPL30R (5-TGTGGCTCAGGAACCTTTAC-3') and
a specific TagMan probe DrRPL30Pr (CY3-RPL30-BHQ2:
5'-GAGCCTGAGTAGGAGCAGCCTGA-3'). Host

genes were amplified in the same reaction, in duplicates.

and parasite

A series of twofold dilutions of three samples (starting from
10 ng/pl) was used to establish a standard curve, computed as the
mean Ct as a function of the common logarithm of the concentra-
tion. For a gPCR of 100% efficiency, the slope of the standard curve
is =3.32. We validated the qPCR protocol when we obtained slopes
between -3.2 and -3.8 for both parasite and host genes.

Reactions were run in a final volume of 20 pl, including 10 pl
of Takyon Low ROX Probe 2X MasterMix (Eurogentec, Seraing,
Belgium), 4 pl of genomic DNA (5 ng/pl), 0.5 uM of each primer,
0.2 uM of each probe, and 1.2 pl of ultrapure water. qPCR was per-
formed in a 7500 real-time PCR System (Applied Biosystem, Foster
City, CA, USA) with the following thermal profile: 2 min at 50°C,
15 min at 95°C, followed by 48 cycles of 15 s at 95°C, and 1 min at
54°C (annealing temperature). In each run of the gPCR, three heavily
infected samples were used as positive controls for reproducibility,
as well as the standard curve, in duplicates. Ct value was estimated
as the mean of the two replicates.

Host and parasite DNA concentrations (a) were calculated as:

C, being the mean of the measured C,, | the intercept of the stan-
dard curve, and m the slope of the standard curve. Relative para-
sitaemia (R) was calculated as the ratio between parasite and host
DNA:

a .
parasite
R=——

Ahost

R was log-transformed in order to normalize the distribution.

2.6 | Analysis of the probability and intensity
of infection

We used generalized linear mixed models (GLMMs) to examine the
influence of hybrid index, elevation (as a proxy for associated en-
vironmental variables), and scaled mass index (SMI, as a proxy for
bird body condition; Peig & Green, 2009) on probability of infec-
tion and coinfection in the hybrid zone, using site and transect of
sampling as random factors, with the function “glmer” implemented
in the R package “Ime4” (Bates, Machler, Bolker, & Walker, 2015).
We fitted different models for five different response variables (1)
Plasmodium infections, (2) Haemoproteus infections, (3) infections by
hDENPENO2 (the most prevalent Haemoproteus lineage in the data-
set), (4) Leucocytozoon infections, and (5) coinfection by Plasmodium
and/or Haemoproteus and Leucocytozoon. In models (1) and (2), indi-

viduals showing Plasmodium and/or Haemoproteus mixed infections

were excluded as they were unidentifiable. We constructed a maxi-
mal model containing the presence/absence of infection (coinfection
for model 5) as response variable with a binomial error structure,
explanatory variables as linear (hybrid index, elevation and SMI) and
quadratic (hybrid index and elevation) functions and the interaction
between hybrid index and elevation (only linear) to account for dif-
ferences in performance of each subspecies/hybrids at different el-
evations. We used the likelihood ratio test to drop nonsignificant
terms, starting with the interaction, and then the quadratic terms,
but in every case, we kept at least the three explanatory variables
as linear functions in the final models. The reason for this is that
Crawley (2012) suggests reporting values from the maximal model
when the data are nonorthogonal, as is often the case in observa-
tional studies, but also generally recommends keeping the models
simple by removing interactions and higher order terms if they are
not significant.

We used linear mixed models to examine the variation in hDEN-
PENO2 parasitaemia in the hybrid zone dependent on host hybrid
index, elevation, scaled mass index, and using sites and transects of
sampling as random factors (model 6), with the function “Imer” im-
plemented in the R package “Ime4” (Bates et al., 2015). We selected
the best model according to the same procedure of the analyses of
the infection probability.

As data used in models 1-6 were sampled along transects, we
computed Moran’s | (Gittleman & Kot, 1990) to test for spatial au-
tocorrelation in the residuals of these models with the function
“Moran.l” implemented in the R package “ape” (Paradis et al., 2004).

To assess the relative importance of age, sex, SMI, and hybrid
index on infection probability in the migrating birds sampled in
2015, we fitted generalized linear models (GLMs) using these ex-
planatory variables and the absence/presence of infection as a re-
sponse variable with a binomial error structure, with the function
“glm” implemented in the R package “Ime4” (Bates et al., 2015). We
tested the interactions between age and sex, as well as the hybrid
index as a quadratic function, and selected the best model ac-
cording to the same procedure as above. We fitted different mod-
els for (7) Plasmodium infections, (8) Haemoproteus infections, (9)
Leucocytozoon infections, and (10) coinfection by Plasmodium and/
or Haemoproteus and Leucocytozoon. In models (7) and (8), individu-
als showing Plasmodium and/or Haemoproteus mixed infections were

excluded as they were unidentifiable.

2.7 | Diversity analyses

Analyses regarding diversity of haemosporidian lineages were con-
ducted on the whole sampling region and considering Plasmodium
and Haemoproteus infections together, because the number
of Plasmodium infections was low, and because Plasmodium
and Haemoproteus groups cluster together in the phylogeny;
Leucocytozoon infections were analyzed separately. We tested our
hypothesis that genetically similar birds had more similar parasite
lineages. In order to do this, we conducted a Mantel test using the
“mantel.rtest” function implemented in the R package “ade4” (Dray
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& Dufour, 2007) with 10,000 permutations. We also did a partial
Mantel test, correcting for geographic distances, using the “mantel.
partial” function implemented in the R package “vegan” (Oksanen
et al., 2015) with the Pearson’s method.

To compare the diversity of haemosporidian lineages between
subspecies of yellow-rumped warblers and the hybrids, we calcu-
lated the Simpson'’s diversity index (D; Simpson, 1949) of lineages in
each category of host (S. c. coronata, S. c. auduboni, hybrids), com-
puted as (%)2 (n; being the number of individuals of lineage i
and N the total number of individuals) in the R package “vegan”
(Oksanen et al., 2015). We report 1-D so higher values represent
a higher diversity. To account for the effect of phylogeny, we also
calculated the standardized effect size (SES) of the Mean Pairwise
Phylogenetic Distance (MPD) and the SES of the Mean Nearest
Taxon Distance (MNTD; Webb, Ackerly, Mcpeek, Donoghue, &
Webb, 2002) as metrics of phylogenetic diversity, with the func-
tions “ses.mpd” and “ses.mntd” implemented in the R package
“picante” (Kembel et al., 2010). We used 10,000 permutations to
create the null models. SES,,, and SES,,p are equivalent to -1
times the Net Relatedness Index (NRI) and -1 times the Nearest
Taxon Index (NTI), respectively. NRI detects phylogenetic clus-
tering or evenness patterns across the whole tree, while NTI is
more sensitive toward the tips of the tree. Clustering means that
phylogenetically closely related lineages are found more often in
the same host species than expected by chance. Evenness means
that the co-occurring lineages are distributed more evenly in the
tree than expected by chance. We calculated these metrics using
the subspecies of warbler as “communities” in order to determine
whether hybrids have a higher diversity of parasites than the pa-
rental subspecies, in which case we would expect negative values
of NRI and NTI in hybrids (i.e., they contain lineages scattered
across the tree), and positive values in parental subspecies if they

are infected by specific lineages.

3 | RESULTS

3.1 | Analysis of the probability and intensity of
infection

Among the 617 yellow-rumped warblers screened for haemospo-
ridian parasites, 345 birds were sampled from the hybrid zone. In
the hybrid zone, we observed a prevalence of 3.2% of Plasmodium
infections (n =11), 30.1% of Haemoproteus infections (104), and
2.3% (8) of Plasmodium and/or Haemoproteus mixed infections.
There was 45.8% of Leucocytozoon infections (n = 158) and 9.9% of
Leucocytozoon mixed infections (34) and 23.2% of birds (80) were co-
infected by parasites of both Leucocytozoon and Plasmodium and/or
Haemoproteus genera. Nine Plasmodium and/or Haemoproteus and 10
Leucocytozoon infections could not be identified due to poor-quality
sequences and were therefore excluded from further analysis.

The results of the models to test elevation and hybrid index on
probability of infection in the hybrid zone are reported in Table 1.
We found that the probability of infection by Haemoproteus varies

according to an interaction between elevation and hybrid index
(model 2: 27=636, p= 0.012): The probability of infection de-
creases with elevation in S. c. auduboni and hybrids, S. c. coronata are
more likely to be infected at higher elevation (Figure 3). This effect
seems mainly driven by hDENPENO2 (model 3: Vo 5.23,p =0.022),
a Haemoproteus lineage that was responsible for 96.1% (n = 100)
of single Haemoproteus infections in the hybrid zone. Body condi-
tion also correlates the probability of infection by Haemoproteus
(model 2: ;(12 =4.98, p = 0.026; model 3: ;(12 =5.93, p=0.015 when
considering only hDENPENO2 infections), probability of coinfection
by Leucocytozoon and Plasmodium and/or Haemoproteus (model 5:
;(f =9.02, p = 0.003) and, marginally, by the probability of infection
by Plasmodium (model 1: )(f =3.78, p = 0.052): Infected birds were
generally heavier than noninfected ones. In terms of elevation,
only the quadratic function of elevation is associated to the prob-
ability of infection by Leucocytozoon (model 4: ;(f =4.61, p=0.032,
Supporting Information Figure S1).

A quadratic function of elevation also best predicted parasitae-
mia of birds infected by hDENPENO2 (model 6: = 4.05, p = 0.044),
and hybridization status did not influence it, nor the body condition
(Table 1 and Figure 4). We found no spatial autocorrelation in the
residuals of the models (Supporting Information Table S2).

In birds sampled in autumn 2015 during autumn migration, nei-
ther age, sex, nor body condition influenced the probability of in-
fection. However, genomic hybrid index was significantly associated
with the probability of infection by Haemoproteus: S. c. coronata was
more infected than S. c. auduboni and hybrids (model 8: ;{f =5.52,
p =0.010; Table 1, Figure 5).

3.2 | Diversity analysis

Eight different lineages of Plasmodium, four different lineages of
Haemoproteus, and 26 different lineages of Leucocytozoon were
found in infected birds in the whole sampling region (Figure 6).
The lineages responsible for mixed infections could not be identi-
fied. Three lineages in particular were abundant: Among identified
Haemoproteus infections, 95.6% were hDENPENO2 and among
identified Leucocytozoon infections, 52.9% were ICNEORNO1, and
20.9% were ICB1, which match morphospecies Leucocytozoon majo-
ris. We found 17 haplotypes that did not match at 100% of identity
the sequences referenced in GenBank nor in MalAvi database of
avian malaria lineages (Bensch et al., 2009). In total, eight lineages
of the haemosporidian parasites that we found are shared between
the two subspecies and the hybrids. One Plasmodium lineage, three
Haemoproteus lineages, and five Leucocytozoon lineages were found
in migrating hatch-year birds in 2015; all these lineages had been
found in the birds from the first sampling (Figure 6).

There was no correlation between host hybrid index and lin-

eage composition (Plasmodium/Haemoproteus: R=0.02, p =0.16;

Leucocytozoon: R=0.01, p=0.26), including when correct-
ing for the effect of geographic distance (Partial Mantel test,
Plasmodium/Haemoproteus: R=0.02, p=0.17; Leucocytozoon:

R=0.00, p =0.47).
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TABLE 1 Description of fitted models

Response variable

(1) Plasmodium infections

(2) Haemoproteus
infections

(3) Infection by
DENPENO2

(4) Leucocytozoon
infections

(5) Coinfection by
Leucocytozoon and
Plasmodium and/or
Haemoproteus

(6) DENPENO2
parasitaemia

Explanatory variables

Intercept
Elevation:hybrid index
I(elevation?)

I(hybrid index?)
Elevation

Hybrid index

SMI

Intercept
Elevation:hybrid index
I(elevation?)

I(hybrid index?)
Elevation

Hybrid index

SMI

Intercept
Elevation:hybrid index
I(elevation?)

I(hybrid index?)
Elevation

Hybrid index

SMI

Intercept
Elevation:hybrid index
I(elevation?)

1(hybrid index?)
Elevation

Hybrid index

SMI

Intercept
Elevation:hybrid index
I(elevation?)

I(hybrid index?)
Elevation

Hybrid index

SMI

Intercept
Elevation:hybrid index
I(elevation?)

I(hybrid index?)
Elevation

Hybrid index
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Deviance

AIC

106.67
105.11
105.14
101.73
102.05
105.36

366.34
361.53
360.88
Marginal

364.96

358.56
354.41
353.79
Marginal

359.26

454.72
457.33
452.84
458.47
452.72
455.07

348.53
346.56
350.16
349.39
346.32
355.25

99.86
101.92
99.58
101.33
99.12

1.93
0.44
0.47
0.15
0.47
3.78

6.36
3.13
2.48

4.98

5.23
3.65
3.02

5.93

1.02
4.61
0.12
5.74

2.35

11

0.03
3.63
3.16
0.09
9.02

2.29
4.05
1.72
3.46
1.25

Prz2)

0.165
0.509
0.494
0.701
0.491
0.052

0.012*
0.077
0.115

0.026*

0.022*
0.056
0.082

0.015*

0.312
0.032*
0.726
0.017*
0.992
0.126

0.295
0.855
0.057
0.076
0.765
0.003**

0.131
0.044*
0.190
0.063
0.263

Estimate

-15.53

0.56
-0.38
0.97
-9.12
22285

145

2.25

0.58
-9.84
-2.1

1.54
1.88
0.64
3.5

5.03
0.13
-12.89
0.01
0.32
-8.42

-1.81

-0.08
0.76
3.7

&3
-0.38
-6.7

0.62

SE
6.72

1.15
0.55
0.49
3.99
0.96

1.65
1.08
0.26
4.01
0.94

1.67
1.06
0.26
3.88

2.09
0.36
4.76
0.77
0.21
3.5

0.83
0.27
0.26
3.02

1.78
0.33
3.94
0.67

(continues)
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TABLE 1 (Continued)
Response variable Explanatory variables Deviance
(7) Plasmodium infections Intercept
I(hybrid index?) 28.444
Hybrid index 29.546
Sex:age 25.688
Sex 28.839
Age 31.405
SMI 28.67
(8) Haemoproteus Intercept
(S I(hybrid index?) 83.617
Hybrid index 90.324
Sex:age 83.163
Sex 84.167
Age 83.668
SMI 84.103
(9) Leucocytozoon Intercept
infections (single or I(hybrid index?) 125.46
mixed)
Hybrid index 128.15
Sex:age 124.36
Sex 127.06
Age 125.5
SMI 125.69
(10) Coinfection by Intercept
;7;;;2?;3:?; Z;‘:r I(hybrid index?) 55.851
Haemoproteus Hybrid index 56.187
Sex:age 55.812
Sex 56.143
Age 56.546
SMI 56.667

Ecology and Evolution . Jﬂ
9 e~ WILEY

Open Access,

AIC ;(f Pr(;(lz) Estimate SE
-6.6 121

38.444 2.76 0.097 -1.48 1.26

37.546 1.1 0.294

37.688 3.04 0.081 M: -0.79 1.24

36.839 0.39 0.530 HY: -2.01 1.29

39.405 2.96 0.085

36.67 0.23 0.635 0.53 1.05
-4.15 6.31

93.617 0.45 0.501 -1.57 0.67

98.324 6.71 0.010**

95.163 1.4 0.237 M: -0.50 0.68

92.167 0.55 0.458 HY:0.21 0.7

91.668 0.05 0.821

92.103 0.49 0.486 0.35 0.55
-3.91 4.99

135.46 1.1 0.295 0.91 0.6

136.15 2.69 0.101

136.36 0.11 0.741 M: -0.66 0.51

135.06 1.6 0.205 HY: -0.14 0.5

133.5 0.04 0.841

133.69 0.24 0.628 0.22 0.43

4.67 8.32

65.851 0.04 0.844 0.59 1.01

64.187 0.34 0.562

67.812 3.63 0.057 M: 0.50 0.94

64.143 0.29 0.589 HY: -0.72 0.81

64.546 0.69 0.405

64.667 0.82 0.366 -0.66 0.73

Notes. Generalized linear mixed models (1)-(5) and generalized linear models (7)-(10) were fitted with a binomial error structure (logit link function).
Response variable values were 1 if infected and 0 if uninfected in (1)-(4) and (7)-(9), 1 if coinfected and O if single or uninfected in (5) and (10), and the
logarithm of parasitaemia in (6). Models (1)-(6) had the transect and site of sampling as random factors. We performed likelihood ratio tests to remove
nonsignificant variables in the following order: (a) interaction; and (b) quadratic terms, both kept if at least one of them was significant. If not significant,
we report values obtained after removal of this term from the last model that contained it. Explanatory variables in bold are those that were kept in the
final model. In every case, elevation, hybrid index and scaled mass index (SMI) were kept in the final model as our data are nonorthogonal, as suggested

by Crawley (2012).
*p-value <0.05; **p-value <0.01.

Measures of Simpson'’s diversity did not show a higher diversity
of haemosporidian lineages in hybrids (Table 2). Similarly, the values
of NRI'and NTI for Plasmodium lineages in hybrids were negative and
smaller than in pure individuals (Table 2), suggesting a tendency for
phylogenetic evenness, a higher diversity than expected by chance,
although note that these values were not significant. Only the NRI
of Plasmodium/Haemoproteus lineages in S. c. coronata and the NTI of
Leucocytozoon lineages in S. c. auduboni were significantly positive,
suggesting basal phylogenetic clustering of Plasmodium lineages in S.
c. coronata and a terminal phylogenetic clustering of Leucocytozoon
lineages in S. c. auduboni. In other words, S. c. coronata tend to be in-
fected by Plasmodium lineages that are phylogenetically closer than

expected by chance and the same with Leucocytozoon lineages in S.

c. auduboni.

4 | DISCUSSION

In this study, we broadly sampled a naturally occurring hybrid
zone between two yellow-rumped warbler subspecies to explore
the role of parasites in potentially selecting against hybrids. We
found that haemosporidian parasites—in diversity and preva-
lence—are unlikely to play a major role in selecting against S.
c. coronata x S. c. auduboni hybrids. Indeed, hybrids did not seem
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Probability of infection by Haemoproteus
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— S. c. coronata
0 — Hybrids
~— S. c. auduboni

600 900 1200 1500
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FIGURE 3 Probability of infection by Haemoproteus in relation
to elevation (in m) for each yellow-rumped warbler group. For the
sake of clarity, we plot values predicted by a model that uses hybrid
index of yellow-rumped warblers as categories instead of the
continuous variable “hybrid index” presented in the results section.
Except for this difference, the model has the same structure to
model (2) in Table 1

to be more infected by haemosporidian parasites than parental
subspecies. We found that prevalence, coinfection probability,
parasitaemia and diversity of haemosporidian lineages were not
higher in hybrids, as we had originally predicted. In migrating
yellow-rumped warblers sampled in autumn, there was no effect
of hybrid index on the probability of infection by Plasmodium or
Leucocytozoon, but we found that S. c. coronata had a higher prob-
ability to be infected by Haemoproteus than S. c. auduboni and
hybrids.

From our results, it seems that most haemosporidian lineages
were shared between myrtle and Audubon’s warblers. Indeed, three
lineages were very abundantin S. c. coronata, S. c. auduboni, and their
hybrids. Some other lineages were found only in one subspecies, or
only in hybrids, or in one subspecies and in hybrids, but this was
generally restricted to only one or two individuals. Additional sam-
pling would be required to determine whether these lineages, when

undocumented, are rare and specific, or if they are simply rare and

Parasitaemia

800 1000 1200 1400
Elevation [m]

FIGURE 4 Parasitaemia in birds infected by hDENPENO2 as a
function of elevation (m)

exclusivity is due to stochastic sampling effects. According to theory
on the evolution of specialization, we could expect specialist hae-
mosporidian parasites to show a higher prevalence and virulence
than generalists (Futuyma & Moreno, 1988). This is sometimes
the case for virulence: For example, Garamszegi (2006) showed
that specialist malaria parasites of primates had a higher parasi-
taemia (used as a proxy for virulence) than generalists. However,
Hellgren, Pérez-Tris, and Bensch (2009) showed that overall more
generalist Plasmodium and Haemoproteus parasites also were the
most abundant in single subspecies. In addition, the haemospo-
ridian lineages found in the sampled yellow-rumped warblers are
relatively generalist and have been found in other species in the
MalAvi database (Bensch et al., 2009). For example, hDENPENO2
has been found in at least seven other species of Passeriformes
in North America and ICNEORNO1 in ten (Oakgrove et al., 2014;
Outlaw & Ricklefs, 2009; Ricklefs & Fallon, 2002; Walther et al.,
2016). Given these results, we suggest that it is unlikely that these
parasites specialize and thereby exert differential levels of selec-
tion between myrtle and Audubon’s warblers. In addition, the com-
mon lineages we found in the hybrid zone were present in both
after hatch-year and hatch-year birds, which had not completed a
full annual migration cycle yet. This means these young birds were
infected on the breeding ground, as opposed to their wintering
grounds, suggesting that infection occurs in the nest or soon after

fledging. This is supported by a recent study on Setophaga coronata



COZZAROLO ET AL.

1
«
S
!
S o7s
[)
g
)
S
I
>
o)
g 05
2
o)
R
I
<
o
2
3 025
©
e
o
a
0

0.0 2.0

FIGURE 5 Probability of infection by Haemoproteus as a
function of genomic hybrid index in migrating birds sampled in
2015. Hybrid index: O represents pure Setophaga coronata coronata,
2 represents pure Setophaga coronata auduboni; values between

0 and 2 are admixed individuals. Bird drawings from Mila, Toews,
Smith, and Wayne (2011)
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auduboni in New Mexico (US) sky islands that found a high diversity
of haemosporidian lineages but no bird infected by hDENPENO2
(Williamson et al., 2018).

In sampling of yellow-rumped warblers along five transects across
the Rocky Mountains, we documented a consistent pattern: Elevation
was an important predictor of prevalence, especially with respect
to Leucocytozoon infections. Indeed, the probability of infection by
Leucocytozoon decreased with elevation in pure individuals and hybrids.
In the context of studying factors shaping haemosporidian parasites dis-
tribution in general, especially regarding the importance of predicting
biodiversity and shifts in community structures under climatic change,
it would be of major value to determine whether this pattern is a re-
sult of an effect of elevation, geographic position and their correlated
abiotic factors (e.g., temperature, solar radiation, humidity, snow cover)
or an effect of correlated biotic factors (e.g., change in plant and ani-
mal communities). Future studies on elevational gradients of parasite
distribution should test whether these effects specifically act on bird
susceptibility, parasite distribution, or on vector distribution and pref-
erences. We propose that the presence of suitable conditions for vec-
tors was the main driver for the observed Leucocytozoon distribution.
Black flies (Simuliidae), the vectors of Leucocytozoon parasites, depend
on running water bodies for their reproduction, and so streams and
rivers are critical to their distribution (Crosskey, 1990). Temperature is
also a factor that influences larval survival (Ross & Merritt, 1978). Many

s ¢

coronata |hybrids|auduboni| Hybrid zone?
DENPETO3 0 1

Hatch-year birds?
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BAEBIC02
SETCORO3
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FIGURE 6 Phylogenetic tree of lineages found in the sampling region. Ultrametric phylogenetic tree of haemosporidian lineages found

in yellow-rumped warblers in a given sampling region, and the number of birds infected by each lineage. Node labels represent bootstrap
values (1,000 replicates). Yellow shading: Plasmodium lineages; blue shading: Haemoproteus lineages; red shading: Leucocytozoon lineages.
Last columns indicate whether the lineage was found in the hybrid zone and whether the lineage was found in hatch-year birds migrating for
the first time in 2015, and thus that are transmitted on the breeding ground. Bird drawings from Mila et al. (2011)
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TABLE 2 Diversity analyses results

1-D NRI NTI

Plasmodium/Haemoproteus

coronata 0.13 1.78 -0.39

Hybrids 0.31 -1.58 -1.27

auduboni 0.39 -0.31 0.88
Leucocytozoon

coronata 0.65 1.62 =LA

Hybrids 0.64 -0.46 0.66

auduboni 0.69 =097 1.64

Note. Simpson'’s index of diversity (D) presented as 1-D (so higher values
reflect higher diversity), Net Relatedness Index (NRI) and Nearest Taxon
Index (NTI) of haemosporidian parasites in hosts subspecies and their
hybrids. Values in bold represent significant values (p < 0.05).

studies focusing on other regions found strong elevation-dependent
structuring of Leucocytozoon (Gonzalez etal., 2014; Imura etal.,
2012; van Rooyen et al., 2013; Zamora-Vilchis et al., 2012).
Regarding the pattern of Haemoproteus prevalence, elevation alone
is not a sufficient explanation, as it seemed to also interact with hy-
brid index. In particular, while there was a trend for decreasing prev-
alence in S. c. auduboni and hybrids, the probability of infection by
Haemoproteus in S. c. coronata strongly increased with elevation. This
is consistent with Williamson et al. (2018) who found that probability
of infection by Parahaemoproteus decreased with elevation in New
Mexico sky-island Audubon’s warblers. One possibility could be that S.
c. coronata do not cope as well in high elevation environments. Stress
induced by a suboptimal ability to acquire resources, for example,
might enhance S. c. coronata susceptibility to Haemoproteus infection.
This mechanism has been supported by the effect of food supplemen-
tation on Plasmodium parasitaemia in experimentally infected canaries
(Cornet, Bichet, Larcombe, Faivre, & Sorci, 2014) and this effect might
well be enhanced in the wild in interaction with other sources of stress.
This study also revealed a pattern, previously identified in great
tits (Ots & Horak, 1998 but see Bennett, Caines, & Bishop, 1988), that
birds infected by Haemoproteus have a higher body condition than
uninfected birds. Indeed, we expected infected birds to have a lower
body condition if haemosporidian infections were detrimental for their
health. However, this pattern was observed only in the breeding birds
sampled in spring, while in birds sampled in autumn 2015 at the begin-
ning of their migration, there was no effect of the body condition on the
probability of infection. It is possible that haemosporidian infections
are more detrimental to yellow-rumped warblers of poor condition, and
that only individuals of good condition are able to survive the winter
with an infection. We expect the weakest birds to die especially during
the winter because migration is potentially stressful and requires sub-
stantial energy reserves (Wikelski et al., 2003). In addition, birds might
be exposed to other parasite species on their wintering ground, which
would be another source of physiological stress. Evidence of the impact
of haemosporidian infections on yellow-rumped warbler health and
mortality would be useful to assess the validity of this hypothesis. It

would also help us to conclude on the potential role of haemosporidian

parasites in selection against S. c. coronata and S. c. auduboni hybrids, as
even if hybrids were not more infected, they could suffer higher costs
of being infected than their parental subspecies.

In conclusion, we found that haemosporidian parasites seem un-
likely to play a major role in imposing a stronger selection pressure
in hybrids of yellow-rumped warblers. S. c. coronata x S. c. auduboni
hybrids seem to exhibit similar patterns to S. c. auduboni with re-
gard to how elevation affects their infection probability. We also
found that both subspecies and hybrids share most of their hae-
mosporidian lineages, which is consistent with these lineages being
generalists. Finally, it seems that elevation, or other correlated
environmental factors, has an important influence on haemospo-
ridian prevalence, especially in Leucocytozoon. This study sheds
some light on the role of haemosporidian parasites on speciation
and opens the door for further investigations about the importance
of parasites in driving host species diversification. Further work
should investigate the potential effect of haemosporidian parasites
on the fitness of both yellow-rumped warblers and their hybrids.
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